論文の概要: Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi
- arxiv url: http://arxiv.org/abs/2109.10835v1
- Date: Wed, 22 Sep 2021 16:52:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-14 01:09:03.734927
- Title: Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi
- Title(参考訳): IntelのニューロモルフィックハードウェアLoihiにおける点ニューロンモデルのマッピングと検証
- Authors: Srijanie Dey and Alexander Dimitrov
- Abstract要約: インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
- 参考スコア(独自算出の注目度): 77.34726150561087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neuromorphic hardware is based on emulating the natural biological structure
of the brain. Since its computational model is similar to standard neural
models, it could serve as a computational acceleration for research projects in
the field of neuroscience and artificial intelligence, including biomedical
applications. However, in order to exploit this new generation of computer
chips, rigorous simulation and consequent validation of brain-based
experimental data is imperative. In this work, we investigate the potential of
Intel's fifth generation neuromorphic chip - `Loihi', which is based on the
novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the
brain. The work is implemented in context of simulating the Leaky Integrate and
Fire (LIF) models based on the mouse primary visual cortex matched to a rich
data set of anatomical, physiological and behavioral constraints. Simulations
on the classical hardware serve as the validation platform for the neuromorphic
implementation. We find that Loihi replicates classical simulations very
efficiently and scales notably well in terms of both time and energy
performance as the networks get larger.
- Abstract(参考訳): ニューロモルフィックハードウェアは、脳の自然の生物学的構造をエミュレートすることに基づいている。
その計算モデルは標準的な神経モデルと似ているため、神経科学と人工知能の分野での研究プロジェクトのための計算加速度として機能する可能性がある。
しかし、この新世代のコンピュータチップを活用するためには、厳密なシミュレーションと脳に基づいた実験データの検証が不可欠である。
本研究では,脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)の新たなアイデアに基づいて,Intelの第5世代ニューロモルフィックチップ「Loihi」の可能性を検討する。
この研究は、解剖学的、生理学的、行動的制約の豊富なデータセットと一致したマウス一次視覚野に基づくLeaky Integrate and Fire(LIF)モデルをシミュレートする文脈で実施されている。
古典的ハードウェア上のシミュレーションは、ニューロモルフィック実装の検証プラットフォームとして機能する。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスの点で顕著にスケールする。
関連論文リスト
- A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANAは、混合信号ニューロモルフィック回路の特性を考慮に入れたスパイクニューラルネットワークシミュレータである。
その結果,ソフトウェアでトレーニングしたスパイクニューラルネットワークの挙動を,信頼性の高い推定結果として提示した。
論文 参考訳(メタデータ) (2024-09-23T11:16:46Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Sequence learning in a spiking neuronal network with memristive synapses [0.0]
脳計算の中心にある中核的な概念は、シーケンス学習と予測である。
ニューロモルフィックハードウェアは、脳が情報を処理する方法をエミュレートし、ニューロンとシナプスを直接物理的基質にマッピングする。
シークエンス学習モデルにおける生物学的シナプスの代替としてReRAMデバイスを使用することの可能性について検討する。
論文 参考訳(メタデータ) (2022-11-29T21:07:23Z) - Spike-based local synaptic plasticity: A survey of computational models
and neuromorphic circuits [1.8464222520424338]
シナプス可塑性のモデル化における歴史的,ボトムアップ的,トップダウン的なアプローチを概観する。
スパイクベース学習ルールの低レイテンシおよび低消費電力ハードウェア実装をサポートする計算プリミティブを同定する。
論文 参考訳(メタデータ) (2022-09-30T15:35:04Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
フォン・ノイマンアーキテクチャと古典的ニューラルネットワークに基づく現代のAIシステムは、脳と比較して多くの基本的な制限がある。
この記事では、そのような制限と、それらが緩和される方法について論じる。
これは、これらの制限が克服されている現在利用可能なニューロモーフィックAIプロジェクトの概要を示す。
論文 参考訳(メタデータ) (2022-05-25T20:16:05Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Evolving spiking neuron cellular automata and networks to emulate in
vitro neuronal activity [0.0]
我々は生体内における生体ニューロンの行動パターンをエミュレートするスパイキング神経系を生産する。
我々のモデルは、ネットワーク全体の同期レベルを生成できた。
トップパフォーマンスモデルのゲノムは、生成した活動の複雑さを決定する上で、モデル内の接続の興奮性と密度が重要な役割を果たすことを示している。
論文 参考訳(メタデータ) (2021-10-15T17:55:04Z) - Neuromorphic Algorithm-hardware Codesign for Temporal Pattern Learning [11.781094547718595]
複雑な空間時間パターンを学習するためにSNNを訓練できるLeaky IntegrateとFireニューロンの効率的なトレーニングアルゴリズムを導出する。
我々は,ニューロンとシナプスのメムリスタに基づくネットワークのためのCMOS回路実装を開発した。
論文 参考訳(メタデータ) (2021-04-21T18:23:31Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
我々は, プレ・グポストシナプスのパートナーを常に切り替えることにより, 構造的可塑性を達成するための戦略を提案する。
我々はこのアルゴリズムをアナログニューロモルフィックシステムBrainScaleS-2に実装した。
ネットワークトポロジを最適化する能力を示し、簡単な教師付き学習シナリオで実装を評価した。
論文 参考訳(メタデータ) (2019-12-27T10:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。