Learning Survival Distribution with Implicit Survival Function
- URL: http://arxiv.org/abs/2305.14655v1
- Date: Wed, 24 May 2023 02:51:29 GMT
- Title: Learning Survival Distribution with Implicit Survival Function
- Authors: Yu Ling, Weimin Tan and Bo Yan
- Abstract summary: We propose Implicit Survival Function (ISF) based on Implicit Neural Representation for survival distribution estimation without strong assumptions.
Experimental results show ISF outperforms the state-of-the-art methods in three public datasets.
- Score: 15.588273962274393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Survival analysis aims at modeling the relationship between covariates and
event occurrence with some untracked (censored) samples. In implementation,
existing methods model the survival distribution with strong assumptions or in
a discrete time space for likelihood estimation with censorship, which leads to
weak generalization. In this paper, we propose Implicit Survival Function (ISF)
based on Implicit Neural Representation for survival distribution estimation
without strong assumptions,and employ numerical integration to approximate the
cumulative distribution function for prediction and optimization. Experimental
results show that ISF outperforms the state-of-the-art methods in three public
datasets and has robustness to the hyperparameter controlling estimation
precision.
Related papers
- Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Model Free Prediction with Uncertainty Assessment [7.524024486998338]
We propose a novel framework that transforms the deep estimation paradigm into a platform conducive to conditional mean estimation.
We develop an end-to-end convergence rate for the conditional diffusion model and establish the normality of the generated samples.
Through numerical experiments, we empirically validate the efficacy of our proposed methodology.
arXiv Detail & Related papers (2024-05-21T11:19:50Z) - Uncertainty Quantification via Stable Distribution Propagation [60.065272548502]
We propose a new approach for propagating stable probability distributions through neural networks.
Our method is based on local linearization, which we show to be an optimal approximation in terms of total variation distance for the ReLU non-linearity.
arXiv Detail & Related papers (2024-02-13T09:40:19Z) - Composite Survival Analysis: Learning with Auxiliary Aggregated
Baselines and Survival Scores [0.0]
Survival Analysis (SA) constitutes the default method for time-to-event modeling.
We show how to improve the training and inference of SA models by decoupling their full expression into (1) an aggregated baseline hazard, which captures the overall behavior of a given population, and (2) independently distributed survival scores, which model idiosyncratic probabilistic dynamics of its given members, in a fully parametric setting.
arXiv Detail & Related papers (2023-12-10T11:13:22Z) - ICTSurF: Implicit Continuous-Time Survival Functions with Neural Networks [0.0]
This research introduces the Implicit Continuous-Time Survival Function (ICTSurF)
ICTSurF is built on a continuous-time survival model and constructs survival distribution through implicit representation.
Our method is capable of accepting inputs in continuous-time space and producing survival probabilities in continuous-time space, independent of neural network architecture.
arXiv Detail & Related papers (2023-12-10T08:29:00Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - Latent Causal Invariant Model [128.7508609492542]
Current supervised learning can learn spurious correlation during the data-fitting process.
We propose a Latent Causal Invariance Model (LaCIM) which pursues causal prediction.
arXiv Detail & Related papers (2020-11-04T10:00:27Z) - WRSE -- a non-parametric weighted-resolution ensemble for predicting
individual survival distributions in the ICU [0.251657752676152]
Dynamic assessment of mortality risk in the intensive care unit (ICU) can be used to stratify patients, inform about treatment effectiveness or serve as part of an early-warning system.
We show competitive results with state-of-the-art probabilistic models, while greatly reducing training time by factors of 2-9x.
arXiv Detail & Related papers (2020-11-02T10:13:59Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
We propose a novel balance-subsampled stable prediction (BSSP) algorithm based on the theory of fractional factorial design.
A design-theoretic analysis shows that the proposed method can reduce the confounding effects among predictors induced by the distribution shift.
Numerical experiments on both synthetic and real-world data sets demonstrate that our BSSP algorithm significantly outperforms the baseline methods for stable prediction across unknown test data.
arXiv Detail & Related papers (2020-06-08T07:01:38Z) - Survival Cluster Analysis [93.50540270973927]
There is an unmet need in survival analysis for identifying subpopulations with distinct risk profiles.
An approach that addresses this need is likely to improve characterization of individual outcomes.
arXiv Detail & Related papers (2020-02-29T22:41:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.