Trusting Your Evidence: Hallucinate Less with Context-aware Decoding
- URL: http://arxiv.org/abs/2305.14739v1
- Date: Wed, 24 May 2023 05:19:15 GMT
- Title: Trusting Your Evidence: Hallucinate Less with Context-aware Decoding
- Authors: Weijia Shi, Xiaochuang Han, Mike Lewis, Yulia Tsvetkov, Luke
Zettlemoyer, Scott Wen-tau Yih
- Abstract summary: Language models (LMs) often struggle to pay enough attention to the input context, and generate texts that are unfaithful or contain hallucinations.
We present context-aware decoding (CAD), which follows a contrastive output distribution that amplifies the difference between the probabilities when a model is used with and without context.
- Score: 91.91468712398385
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language models (LMs) often struggle to pay enough attention to the input
context, and generate texts that are unfaithful or contain hallucinations. To
mitigate this issue, we present context-aware decoding (CAD), which follows a
contrastive output distribution that amplifies the difference between the
output probabilities when a model is used with and without context. Our
experiments show that CAD, without additional training, significantly improves
the faithfulness of different LM families, including OPT, GPT, LLaMA and
FLAN-T5 for summarization tasks (e.g., 14.3% gain for LLaMA in factuality
metrics). Furthermore, CAD is particularly effective in overriding a model's
prior knowledge when it contradicts the provided context, leading to
substantial improvements in tasks where resolving the knowledge conflict is
essential.
Related papers
- AdaCAD: Adaptively Decoding to Balance Conflicts between Contextual and Parametric Knowledge [57.66282463340297]
Knowledge conflict arises from discrepancies between information in the context of a large language model (LLM) and the knowledge stored in its parameters.
We propose a fine-grained, instance-level approach called AdaCAD, which dynamically infers the weight of adjustment based on the degree of conflict.
arXiv Detail & Related papers (2024-09-11T16:35:18Z) - Enhancing Contextual Understanding in Large Language Models through Contrastive Decoding [9.2433070542025]
Large language models (LLMs) tend to inadequately integrate input context during text generation.
We introduce a novel approach integrating contrastive decoding with adversarial irrelevant passages as negative samples.
arXiv Detail & Related papers (2024-05-04T20:38:41Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICL is a novel few-shot technique that leverages both correct and incorrect sample constructions to create in-context learning demonstrations.
Our experiments on various datasets indicate that c-ICL outperforms previous few-shot in-context learning methods.
arXiv Detail & Related papers (2024-02-17T11:28:08Z) - DoLa: Decoding by Contrasting Layers Improves Factuality in Large
Language Models [79.01926242857613]
Large language models (LLMs) are prone to hallucinations, generating content that deviates from facts seen during pretraining.
We propose a simple decoding strategy for reducing hallucinations with pretrained LLMs.
We find that this Decoding by Contrasting Layers (DoLa) approach is able to better surface factual knowledge and reduce the generation of incorrect facts.
arXiv Detail & Related papers (2023-09-07T17:45:31Z) - IERL: Interpretable Ensemble Representation Learning -- Combining
CrowdSourced Knowledge and Distributed Semantic Representations [11.008412414253662]
Large Language Models (LLMs) encode meanings of words in the form of distributed semantics.
Recent studies have shown that LLMs tend to generate unintended, inconsistent, or wrong texts as outputs.
We propose a novel ensemble learning method, Interpretable Ensemble Representation Learning (IERL), that systematically combines LLM and crowdsourced knowledge representations.
arXiv Detail & Related papers (2023-06-24T05:02:34Z) - CRITIC: Large Language Models Can Self-Correct with Tool-Interactive
Critiquing [139.77117915309023]
CRITIC allows large language models to validate and amend their own outputs in a manner similar to human interaction with tools.
Comprehensive evaluations involving free-form question answering, mathematical program synthesis, and toxicity reduction demonstrate that CRITIC consistently enhances the performance of LLMs.
arXiv Detail & Related papers (2023-05-19T15:19:44Z) - Correlation Information Bottleneck: Towards Adapting Pretrained
Multimodal Models for Robust Visual Question Answering [63.87200781247364]
Correlation Information Bottleneck (CIB) seeks a tradeoff between compression and redundancy in representations.
We derive a tight theoretical upper bound for the mutual information between multimodal inputs and representations.
arXiv Detail & Related papers (2022-09-14T22:04:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.