論文の概要: Detection of Non-uniformity in Parameters for Magnetic Domain Pattern
Generation by Machine Learning
- arxiv url: http://arxiv.org/abs/2305.14764v1
- Date: Wed, 24 May 2023 06:15:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 19:10:36.640207
- Title: Detection of Non-uniformity in Parameters for Magnetic Domain Pattern
Generation by Machine Learning
- Title(参考訳): 機械学習による磁区パターン生成パラメータの不均一性の検出
- Authors: Naoya Mamada, Masaichiro Mizumaki, Ichiro Akai, and Toru Aonishi
- Abstract要約: 磁区の小さな部分領域ウィンドウ内のパターンからパラメータを推定し,物理パラメータの空間マップを得る手法を提案する。
我々は,自然画像分類に利用される大規模モデルを採用し,事前学習の利点を生かした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We attempt to estimate the spatial distribution of heterogeneous physical
parameters involved in the formation of magnetic domain patterns of
polycrystalline thin films by using convolutional neural networks. We propose a
method to obtain a spatial map of physical parameters by estimating the
parameters from patterns within a small subregion window of the full magnetic
domain and subsequently shifting this window. To enhance the accuracy of
parameter estimation in such subregions, we employ employ large-scale models
utilized for natural image classification and exploit the benefits of
pretraining. Using a model with high estimation accuracy on these subregions,
we conduct inference on simulation data featuring spatially varying parameters
and demonstrate the capability to detect such parameter variations.
- Abstract(参考訳): 畳み込みニューラルネットワークを用いて多結晶薄膜の磁区パターン形成に関与する不均一な物理パラメータの空間分布を推定する。
本研究では,磁区の小さな部分領域のウィンドウ内のパターンからパラメータを推定し,そのウィンドウをシフトすることで,物理パラメータの空間マップを得る手法を提案する。
このような部分領域におけるパラメータ推定の精度を高めるために,自然画像分類に用いた大規模モデルを採用し,事前学習の利点を生かした。
これらの部分領域における推定精度の高いモデルを用いて,空間変動パラメータを特徴とするシミュレーションデータの推測を行い,パラメータ変動の検出能力を示す。
関連論文リスト
- Nonuniform random feature models using derivative information [10.239175197655266]
ニューラルネットワークの初期化のための不均一なデータ駆動パラメータ分布を近似する関数の微分データに基づいて提案する。
We address the case of Heaviside and ReLU activation function and their smooth approximations (Sigmoid and softplus)。
入力点における近似微分データに基づいて、これらの正確な密度を単純化し、非常に効率的なサンプリングを可能にし、複数のシナリオにおいて最適なネットワークに近いランダムな特徴モデルの性能をもたらすことを提案する。
論文 参考訳(メタデータ) (2024-10-03T01:30:13Z) - Estimation of spatio-temporal extremes via generative neural networks [0.0]
利用可能なデータが少ない空間的極端を解析するための統一的なアプローチを提供する。
生成ニューラルネットワークの最近の発展を活用して、完全なサンプルベースの分布を予測する。
提案手法は,複数のシミュレーションされた最大安定過程を適合させて検証し,高精度なアプローチを示す。
論文 参考訳(メタデータ) (2024-07-11T16:57:17Z) - Learning Radio Environments by Differentiable Ray Tracing [56.40113938833999]
本稿では, 材料特性, 散乱, アンテナパターンの微分パラメトリゼーションによって補う, 勾配式キャリブレーション法を提案する。
提案手法は,MIMO(分散マルチインプットマルチインプット・マルチアウトプット・チャネル・サウンドア)を用いて,合成データと実世界の屋内チャネル計測の両方を用いて検証した。
論文 参考訳(メタデータ) (2023-11-30T13:50:21Z) - Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels [78.6096486885658]
線形化されたラプラス近似に下界を導入する。
これらの境界は漸進的な最適化が可能であり、推定精度と計算複雑性とのトレードオフを可能にする。
論文 参考訳(メタデータ) (2023-06-06T19:02:57Z) - Support Vector Machine for Determining Euler Angles in an Inertial
Navigation System [55.41644538483948]
本稿では,機械学習(ML)法を用いたMEMSセンサを用いた慣性ナビゲーションシステムの精度向上について論じる。
提案アルゴリズムは,MEMSセンサに典型的なノイズの存在を正しく分類できることを実証した。
論文 参考訳(メタデータ) (2022-12-07T10:01:11Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Arbitrary Marginal Neural Ratio Estimation for Simulation-based
Inference [7.888755225607877]
本稿では,数値積分に頼らずにパラメータの任意の部分集合に対する償却推論を可能にする新しい手法を提案する。
重力波観測による二元ブラックホール系のパラメータ推定法の適用性を示す。
論文 参考訳(メタデータ) (2021-10-01T14:35:46Z) - Combining data assimilation and machine learning to estimate parameters
of a convective-scale model [0.0]
対流を許容する数値気象予測モデルにおける雲の表現の誤差は、異なる情報源によって導入することができる。
本研究では,2種類のニューラルネットワークをトレーニングすることにより,人工知能レンズによるパラメータ推定の問題を検討する。
論文 参考訳(メタデータ) (2021-09-07T09:17:29Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
バナジウムフローバッテリ(VRFB)のゼロ次元(0D)モデルにおけるパラメータ推定のための物理拘束型ディープニューラルネットワーク(PCDNN)を提案する。
そこで, PCDNN法は, 動作条件のモデルパラメータを推定し, 電圧の0Dモデル予測を改善することができることを示す。
また,PCDNNアプローチでは,トレーニングに使用しない操作条件のパラメータ値を推定する一般化能力が向上することが実証された。
論文 参考訳(メタデータ) (2021-06-21T23:42:58Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Bayesian multiscale deep generative model for the solution of
high-dimensional inverse problems [0.0]
深層確率的生成モデルに基づく新しいマルチスケールベイズ推論手法が導入された。
この方法は、安定性、効率、精度を示しながら、高次元パラメータ推定を可能にする。
論文 参考訳(メタデータ) (2021-02-04T11:47:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。