論文の概要: Deep Learning for Survival Analysis: A Review
- arxiv url: http://arxiv.org/abs/2305.14961v4
- Date: Thu, 22 Feb 2024 08:17:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-23 19:13:34.146379
- Title: Deep Learning for Survival Analysis: A Review
- Title(参考訳): 生存分析のためのディープラーニング: レビュー
- Authors: Simon Wiegrebe, Philipp Kopper, Raphael Sonabend, Bernd Bischl, and
Andreas Bender
- Abstract要約: 深層学習(DL)技術の生存分析分野への流入は,方法論的な進歩をもたらした。
本研究は,DL関連属性およびDL関連属性に基づいて,DLに基づく時間-時間分析手法の体系的レビューを行う。
- 参考スコア(独自算出の注目度): 7.016568778869699
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The influx of deep learning (DL) techniques into the field of survival
analysis in recent years has led to substantial methodological progress; for
instance, learning from unstructured or high-dimensional data such as images,
text or omics data. In this work, we conduct a comprehensive systematic review
of DL-based methods for time-to-event analysis, characterizing them according
to both survival- and DL-related attributes. In summary, the reviewed methods
often address only a small subset of tasks relevant to time-to-event data -
e.g., single-risk right-censored data - and neglect to incorporate more complex
settings. Our findings are summarized in an editable, open-source, interactive
table: https://survival-org.github.io/DL4Survival. As this research area is
advancing rapidly, we encourage community contribution in order to keep this
database up to date.
- Abstract(参考訳): 近年の深層学習(DL)技術の生存分析分野への流入は、例えば、画像、テキスト、オミクスデータなどの非構造化データや高次元データから学ぶなど、大きな方法論的進歩をもたらした。
本研究は, DL関連属性と生存関連属性の両方に基づいて, DL-based method for time-to-event analysisを包括的に検討する。
まとめると、レビューされたメソッドは、時間から時間までのデータに関連するタスクの小さなサブセットにのみ対処する。
シングルリスクの右チャージされたデータで、より複雑な設定を組み込むことを無視する。
我々の発見は編集可能でオープンソースでインタラクティブなテーブルで要約されている。
この研究領域は急速に進歩しているので、このデータベースを最新に保つため、コミュニティの貢献を奨励します。
関連論文リスト
- Deep End-to-End Survival Analysis with Temporal Consistency [49.77103348208835]
本稿では,大規模長手データの処理を効率的に行うために,Survival Analysisアルゴリズムを提案する。
我々の手法における中心的な考え方は、時間とともにデータにおける過去と将来の成果が円滑に進化するという仮説である時間的一貫性である。
我々のフレームワークは、安定したトレーニング信号を提供することで、時間的一貫性を大きなデータセットに独自に組み込む。
論文 参考訳(メタデータ) (2024-10-09T11:37:09Z) - Self-Supervised Learning for Text Recognition: A Critical Survey [11.599791967838481]
テキスト認識(英語: Text Recognition, TR)とは、画像からテキスト情報を取得することに焦点を当てた研究領域である。
ディープニューラルネットワーク(DNN)のトレーニングにラベルなしデータの大規模なデータセットを活用することで、自己監視学習(SSL)が注目されている。
本稿では,TR分野におけるSSLの利用を集約し,その技術の現状を概観する。
論文 参考訳(メタデータ) (2024-07-29T11:11:17Z) - Large-Scale Dataset Pruning in Adversarial Training through Data Importance Extrapolation [1.3124513975412255]
本稿では,少数のデータ集合からより大きなデータ集合へのデータ重要度スコアの補間に基づく新たなデータ抽出戦略を提案する。
実験的な評価では,外挿型プルーニングは頑健性を維持しつつ,データセットサイズを効率的に削減できることを示した。
論文 参考訳(メタデータ) (2024-06-19T07:23:51Z) - Label-Efficient Deep Learning in Medical Image Analysis: Challenges and
Future Directions [10.502964056448283]
医用画像解析のトレーニングモデルは通常、ラベル付きデータの高価で時間を要する。
我々は最近の300以上の論文を網羅的に調査し、MIAにおけるラベル効率学習戦略の進捗状況を概観した。
具体的には、標準半教師付き、自己監督型、マルチインスタンス学習スキームだけでなく、最近出現したアクティブかつアノテーション効率の学習戦略についても詳細に調査する。
論文 参考訳(メタデータ) (2023-03-22T11:51:49Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
ビッグデータの一般化能力を近似した小さなデータについて学ぶことは、AIの究極の目的の1つである。
この調査はPACフレームワークの下でのアクティブサンプリング理論に従い、小さなデータにおける学習の一般化誤差とラベルの複雑さを分析した。
効率的な小さなデータ表現の恩恵を受けるかもしれない複数のデータアプリケーションについて調査する。
論文 参考訳(メタデータ) (2022-07-29T02:34:19Z) - Deeply-Learned Generalized Linear Models with Missing Data [6.302686933168439]
我々は、深く学習された一般化線形モデルの文脈において、欠測データの形式的処理を行う。
我々は、無視できないパターンと無視できないパターンの両方を柔軟に説明できる新しいアーキテクチャ、textitdlglmを提案する。
UCI Machine Learning Repositoryのバンクマーケティングデータセットのケーススタディで締めくくった。
論文 参考訳(メタデータ) (2022-07-18T20:00:13Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z) - Sample-Efficient Reinforcement Learning in the Presence of Exogenous
Information [77.19830787312743]
実世界の強化学習アプリケーションでは、学習者の観察空間は、その課題に関する関連情報と無関係情報の両方でユビキタスに高次元である。
本稿では,強化学習のための新しい問題設定法であるExogenous Decision Process (ExoMDP)を導入する。
内因性成分の大きさのサンプル複雑度で準最適ポリシーを学習するアルゴリズムであるExoRLを提案する。
論文 参考訳(メタデータ) (2022-06-09T05:19:32Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
MedMNISTコレクションの連続的な疾患分類のためのベンチマークであるLifeLongerを紹介する。
タスクとクラスでの病気の漸進的な学習は、モデルをスクラッチから再トレーニングすることなく、新しいサンプルを分類する問題に対処する。
クロスドメインインクリメンタル学習は、これまで得られた知識を維持しながら、異なる機関から派生したデータセットを扱う問題に対処する。
論文 参考訳(メタデータ) (2022-04-12T12:25:05Z) - Deep Learning Schema-based Event Extraction: Literature Review and
Current Trends [60.29289298349322]
ディープラーニングに基づくイベント抽出技術が研究ホットスポットとなっている。
本稿では,ディープラーニングモデルに焦点をあて,最先端のアプローチを見直し,そのギャップを埋める。
論文 参考訳(メタデータ) (2021-07-05T16:32:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。