論文の概要: Simultaneous identification of models and parameters of scientific simulators
- arxiv url: http://arxiv.org/abs/2305.15174v3
- Date: Thu, 30 May 2024 14:15:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-01 00:12:24.767482
- Title: Simultaneous identification of models and parameters of scientific simulators
- Title(参考訳): 科学シミュレータのモデルとパラメータの同時同定
- Authors: Cornelius Schröder, Jakob H. Macke,
- Abstract要約: 本研究は,本質的なモデルコンポーネントを特定するためのシミュレーションベースの推論フレームワークを開発する。
いかなる構成シミュレータにも、評価を必要とせずに適用することができる。
非識別のモデルコンポーネントとパラメータを明らかにします。
- 参考スコア(独自算出の注目度): 7.473394133229206
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Many scientific models are composed of multiple discrete components, and scientists often make heuristic decisions about which components to include. Bayesian inference provides a mathematical framework for systematically selecting model components, but defining prior distributions over model components and developing associated inference schemes has been challenging. We approach this problem in a simulation-based inference framework: We define model priors over candidate components and, from model simulations, train neural networks to infer joint probability distributions over both model components and associated parameters. Our method, simulation-based model inference (SBMI), represents distributions over model components as a conditional mixture of multivariate binary distributions in the Grassmann formalism. SBMI can be applied to any compositional stochastic simulator without requiring likelihood evaluations. We evaluate SBMI on a simple time series model and on two scientific models from neuroscience, and show that it can discover multiple data-consistent model configurations, and that it reveals non-identifiable model components and parameters. SBMI provides a powerful tool for data-driven scientific inquiry which will allow scientists to identify essential model components and make uncertainty-informed modelling decisions.
- Abstract(参考訳): 多くの科学的モデルは複数の離散成分で構成されており、科学者はしばしばどの成分を含むかというヒューリスティックな決定を行う。
ベイズ推論は、モデルコンポーネントを体系的に選択するための数学的枠組みを提供するが、モデルコンポーネントに対する事前分布を定義し、関連する推論スキームを開発することは困難である。
モデルシミュレーションから、モデルコンポーネントと関連するパラメータの両方の結合確率分布を推論するために、ニューラルネットワークをトレーニングする。
シミュレーションに基づくモデル推論(SBMI)は、グラスマン形式における多変量二元分布の条件混合としてモデル成分上の分布を表す。
SBMIは任意の構成確率シミュレータに適用できる。
我々は,SBMIを単純な時系列モデルと神経科学からの2つの科学的モデルで評価し,複数のデータ一貫性モデル構成を発見し,同定不可能なモデル成分とパラメータを明らかにした。
SBMIは、科学者が本質的なモデルコンポーネントを特定し、不確実性にインフォームドされたモデリング決定を行うことを可能にする、データ駆動の科学的調査のための強力なツールを提供する。
関連論文リスト
- Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - On generative models as the basis for digital twins [0.0]
デジタルツインや構造鏡の基礎として、生成モデルのためのフレームワークが提案されている。
この提案は、決定論的モデルは、ほとんどの構造モデリングアプリケーションに存在する不確実性を説明できないという前提に基づいている。
論文 参考訳(メタデータ) (2022-03-08T20:34:56Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Surrogate Modeling for Physical Systems with Preserved Properties and
Adjustable Tradeoffs [0.0]
代理モデルを生成するためのモデルベースおよびデータ駆動型戦略を提案する。
後者は、前提となる位相構造に人工的関係を組み込むことで解釈可能な代理モデルを生成する。
我々のフレームワークは、分散パラメータモデルのための様々な空間離散化スキームと互換性がある。
論文 参考訳(メタデータ) (2022-02-02T17:07:02Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
本稿では,専門的なディープラーニングアーキテクチャを用いたベイズモデルの比較手法を提案する。
提案手法は純粋にシミュレーションベースであり,観測された各データセットに対して,すべての代替モデルを明示的に適合させるステップを回避している。
提案手法は,本研究で検討した事例に対して,精度,キャリブレーション,効率の点で優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-04-22T15:15:46Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
我々は、機械学習にインスパイアされたモデルと物理モデルを組み合わせた、新しいハイブリッドモデリングアプローチの概要を述べる。
このようなモデルをリアルタイム診断に利用しています。
論文 参考訳(メタデータ) (2020-03-04T00:44:57Z) - Struct-MMSB: Mixed Membership Stochastic Blockmodels with Interpretable
Structured Priors [13.712395104755783]
混合メンバシップブロックモデル(MMSB)は、コミュニティ検出とネットワーク生成のための一般的なフレームワークである。
最近開発された統計リレーショナル学習モデルであるヒンジロスマルコフ確率場(HL-MRF)を用いた柔軟なMMSBモデル、textitStruct-MMSBを提案する。
我々のモデルは、観測された特徴と会員分布の複雑な組み合わせとして符号化された有意義な潜伏変数を用いて、実世界のネットワークにおける潜伏特性を学習することができる。
論文 参考訳(メタデータ) (2020-02-21T19:32:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。