論文の概要: Relating Implicit Bias and Adversarial Attacks through Intrinsic
Dimension
- arxiv url: http://arxiv.org/abs/2305.15203v1
- Date: Wed, 24 May 2023 14:40:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 15:09:01.751290
- Title: Relating Implicit Bias and Adversarial Attacks through Intrinsic
Dimension
- Title(参考訳): 内在的次元による暗黙的バイアスと敵意攻撃の関連
- Authors: Lorenzo Basile, Nikos Karantzas, Alberto D'Onofrio, Luca Bortolussi,
Alex Rodriguez, Fabio Anselmi
- Abstract要約: 敵の攻撃は モデルを騙すように設計された 入力データの小さな摂動だ
我々は、ニューラルネットワークの暗黙の偏見に焦点を当て、特定のパターンや結果を支持するために、その固有の傾きを参照する。
固有次元と相関関係の絡み合いを利用して、フーリエ空間におけるネットワークバイアスと敵攻撃の標的周波数が密接な結びつきを示す。
- 参考スコア(独自算出の注目度): 0.6524460254566905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite their impressive performance in classification, neural networks are
known to be vulnerable to adversarial attacks. These attacks are small
perturbations of the input data designed to fool the model. Naturally, a
question arises regarding the potential connection between the architecture,
settings, or properties of the model and the nature of the attack. In this
work, we aim to shed light on this problem by focusing on the implicit bias of
the neural network, which refers to its inherent inclination to favor specific
patterns or outcomes. Specifically, we investigate one aspect of the implicit
bias, which involves the essential Fourier frequencies required for accurate
image classification. We conduct tests to assess the statistical relationship
between these frequencies and those necessary for a successful attack. To delve
into this relationship, we propose a new method that can uncover non-linear
correlations between sets of coordinates, which, in our case, are the
aforementioned frequencies. By exploiting the entanglement between intrinsic
dimension and correlation, we provide empirical evidence that the network bias
in Fourier space and the target frequencies of adversarial attacks are closely
tied.
- Abstract(参考訳): 分類における優れた性能にもかかわらず、ニューラルネットワークは敵の攻撃に弱いことが知られている。
これらの攻撃は、モデルを騙すように設計された入力データの小さな摂動である。
当然、モデルのアーキテクチャ、設定、プロパティ、および攻撃の性質の間の潜在的なつながりについて疑問が生まれます。
本研究は,ニューラルネットワークの暗黙のバイアスに着目し,特定のパターンや結果を好む本質的な傾向を示すことにより,この問題に光を当てることを目的とする。
具体的には,正確な画像分類に必要なフーリエ周波数を含む暗黙のバイアスの一側面について検討する。
我々はこれらの周波数と攻撃成功に必要な周波数の統計的関係を評価するために試験を行う。
そこで本研究では,この関係を解明するために,座標集合間の非線形相関を明らかにする新しい手法を提案する。
内在次元と相関の絡み合いを利用して,フーリエ空間におけるネットワークバイアスと対向攻撃の標的周波数が密接な関係にあることを示す。
関連論文リスト
- How adversarial attacks can disrupt seemingly stable accurate classifiers [76.95145661711514]
敵攻撃は、入力データに不連続な修正を加えることで、非正確な学習システムの出力を劇的に変化させる。
ここでは,これは高次元入力データを扱う分類器の基本的特徴であると考えられる。
実用システムで観測される重要な振る舞いを高い確率で発生させる、単純で汎用的なフレームワークを導入する。
論文 参考訳(メタデータ) (2023-09-07T12:02:00Z) - Deep Neural Networks based Meta-Learning for Network Intrusion Detection [0.24466725954625884]
産業の異なるコンポーネントのデジタル化と先住民ネットワーク間の相互接続性は、ネットワーク攻撃のリスクを高めている。
コンピュータネットワークの予測モデルを構築するために使用されるデータには、スキュークラス分布と攻撃型の限定表現がある。
Information Fusion and Stacking Ensemble (INFUSE) という,ネットワーク侵入検出のための新しいディープニューラルネットワークベースのメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-18T18:00:05Z) - Unfolding Local Growth Rate Estimates for (Almost) Perfect Adversarial
Detection [22.99930028876662]
畳み込みニューラルネットワーク(CNN)は、多くの知覚的タスクにおける最先端のソリューションを定義する。
現在のCNNアプローチは、システムを騙すために特別に作られた入力の敵の摂動に対して脆弱なままである。
本稿では,ネットワークの局所固有次元(LID)と敵攻撃の関係について,最近の知見を生かした,シンプルで軽量な検出器を提案する。
論文 参考訳(メタデータ) (2022-12-13T17:51:32Z) - Efficient and Robust Classification for Sparse Attacks [34.48667992227529]
我々は、画像認識、自然言語処理、マルウェア検出の領域において効果的な攻撃として示されてきた$ell$-normで束縛された摂動を考える。
我々は,「トランケーション」と「アドリアル・トレーニング」を組み合わせた新しい防衛手法を提案する。
得られた洞察に触発され、これらのコンポーネントをニューラルネットワーク分類器に拡張する。
論文 参考訳(メタデータ) (2022-01-23T21:18:17Z) - The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer
Linear Networks [51.1848572349154]
ノイズの多いデータに完全に適合するニューラルネットワークモデルは、見当たらないテストデータにうまく一般化できる。
我々は,2層線形ニューラルネットワークを2乗損失の勾配流で補間し,余剰リスクを導出する。
論文 参考訳(メタデータ) (2021-08-25T22:01:01Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Vulnerability Under Adversarial Machine Learning: Bias or Variance? [77.30759061082085]
本研究では,機械学習が訓練された深層ニューラルネットワークのバイアスと分散に与える影響について検討する。
我々の分析は、ディープニューラルネットワークが対向的摂動下で性能が劣っている理由に光を当てている。
本稿では,計算処理の複雑さをよく知られた機械学習手法よりも低く抑えた,新しい逆機械学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-01T00:58:54Z) - Learning from Failure: Training Debiased Classifier from Biased
Classifier [76.52804102765931]
ニューラルネットワークは、所望の知識よりも学習が簡単である場合にのみ、素早い相関に依存することを学習していることを示す。
本稿では,一対のニューラルネットワークを同時にトレーニングすることで,障害に基づくデバイアス化手法を提案する。
本手法は,合成データセットと実世界のデータセットの両方において,各種バイアスに対するネットワークのトレーニングを大幅に改善する。
論文 参考訳(メタデータ) (2020-07-06T07:20:29Z) - Relationship between manifold smoothness and adversarial vulnerability
in deep learning with local errors [2.7834038784275403]
ニューラルネットワークにおける敵の脆弱性の起源について検討する。
本研究は,隠れ表現の固有スペクトルの比較的高速なパワーロー崩壊を必要とすることを明らかにする。
論文 参考訳(メタデータ) (2020-07-04T08:47:51Z) - Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness [97.67477497115163]
我々は、モード接続を用いて、ディープニューラルネットワークの対角的堅牢性を研究する。
実験では、異なるネットワークアーキテクチャやデータセットに適用される様々な種類の敵攻撃について取り上げる。
以上の結果から,モード接続は,敵の強靭性を評価・改善するための総合的なツールであり,実用的な手段であることが示唆された。
論文 参考訳(メタデータ) (2020-04-30T19:12:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。