論文の概要: LMs with a Voice: Spoken Language Modeling beyond Speech Tokens
- arxiv url: http://arxiv.org/abs/2305.15255v1
- Date: Wed, 24 May 2023 15:39:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 14:50:37.798451
- Title: LMs with a Voice: Spoken Language Modeling beyond Speech Tokens
- Title(参考訳): 音声によるLM:音声トークン以外の音声言語モデリング
- Authors: Eliya Nachmani, Alon Levkovitch, Julian Salazar, Chulayutsh
Asawaroengchai, Soroosh Mariooryad, RJ Skerry-Ryan, Michelle Tadmor
Ramanovich
- Abstract要約: SPECTRONは、事前訓練された言語モデル(LM)を用いて音声継続を行うための新しいアプローチである。
事前学習した音声エンコーダを利用することで、本モデルはテキストと音声の両方の出力を生成し、システム全体がスペクトル上で直接操作するエンドツーエンドの訓練を行う。
- 参考スコア(独自算出の注目度): 21.904742779710062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present SPECTRON, a novel approach to adapting pre-trained language models
(LMs) to perform speech continuation. By leveraging pre-trained speech
encoders, our model generates both text and speech outputs with the entire
system being trained end-to-end operating directly on spectrograms. Training
the entire model in the spectrogram domain simplifies our speech continuation
system versus existing cascade methods which use discrete speech
representations. We further show our method surpasses existing spoken language
models both in semantic content and speaker preservation while also benefiting
from the knowledge transferred from pre-existing models. Audio samples can be
found in our website https://michelleramanovich.github.io/spectron/spectron
- Abstract(参考訳): 本稿では,前訓練言語モデル(lms)を音声継続に適応させる新しいアプローチであるspectronを提案する。
事前学習した音声エンコーダを利用することで、本モデルはテキストと音声の両方の出力を生成し、システム全体がスペクトルを直接操作するエンドツーエンドの訓練を行う。
スペクトログラム領域におけるモデル全体の訓練は、離散的な音声表現を使用する既存のカスケード法と比較して、音声継続システムを単純化する。
さらに,提案手法は,既存の言語モデルに先行する知識の恩恵を受けつつ,意味的内容と話者保存の両方において既存の音声言語モデルを上回ることを示す。
オーディオサンプルは当社のwebサイトhttps://michelleramanovich.github.io/spectron/spectronにあります。
関連論文リスト
- DiscreteSLU: A Large Language Model with Self-Supervised Discrete Speech Units for Spoken Language Understanding [51.32965203977845]
本稿では,連続的な音声エンコーダ出力の代わりに離散音声単位(DSU)を用いることを提案する。
提案モデルでは, 未知領域からの音声入力に対する頑健な性能と, 音声質問応答における指示追従能力を示す。
この結果から,ASRタスクとデータセットは,音声質問応答タスクの指導訓練に必須ではないことが示唆された。
論文 参考訳(メタデータ) (2024-06-13T17:28:13Z) - Prompting Large Language Models with Audio for General-Purpose Speech Summarization [13.415189715216354]
大規模言語モデル(LLM)の処理と推論機能を活用した音声要約フレームワークを提案する。
本稿では,LLM が解釈可能なトークン表現に変換する音声エンコーダと命令調整 LLM を組み合わせたエンドツーエンドシステムを提案する。
論文 参考訳(メタデータ) (2024-06-10T02:04:28Z) - AudioChatLlama: Towards General-Purpose Speech Abilities for LLMs [27.122094554340194]
我々は、エンドツーエンドの汎用音声処理と推論能力を備えた命令調整型Llama-2モデルを拡張する。
結果、AudioChatLlamaと呼ばれるエンドツーエンドモデルは、音声プロンプトをテキストの代替として利用し、会話を維持することができる。
論文 参考訳(メタデータ) (2023-11-12T06:56:14Z) - Instruction-Following Speech Recognition [21.591086644665197]
本稿では,命令追従音声認識を導入し,多様な自由形式のテキスト命令の理解と実行を行うリステン・アテンド・スペルモデルを訓練する。
注目すべきは、我々のモデルは、Librispeechでゼロから訓練され、大規模言語モデルや事前訓練された音声モジュールを必要とせずに、簡単な命令を解釈し、実行します。
論文 参考訳(メタデータ) (2023-09-18T14:59:10Z) - On decoder-only architecture for speech-to-text and large language model
integration [59.49886892602309]
Speech-LLaMAは、音声情報をテキストベースの大規模言語モデルに効果的に組み込む新しいアプローチである。
我々は多言語音声からテキストへの翻訳タスクの実験を行い、強いベースラインよりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2023-07-08T06:47:58Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
本稿では,音声理解・生成のための大規模言語モデルであるAudioPaLMを紹介する。
AudioPaLMはテキストベースの言語モデルと音声ベースの言語モデルを融合する。
音声認識や音声音声翻訳などの応用により、テキストと音声を処理および生成することができる。
論文 参考訳(メタデータ) (2023-06-22T14:37:54Z) - VATLM: Visual-Audio-Text Pre-Training with Unified Masked Prediction for
Speech Representation Learning [119.49605266839053]
VATLM (Visual-Audio-Text Language Model) を用いたクロスモーダル表現学習フレームワークを提案する。
提案したVATLMは、モダリティに依存しない情報をモデル化するために、統一されたバックボーンネットワークを使用する。
これら3つのモダリティを1つの共有セマンティック空間に統合するために、VATLMは統一トークンのマスク付き予測タスクで最適化される。
論文 参考訳(メタデータ) (2022-11-21T09:10:10Z) - SpeechUT: Bridging Speech and Text with Hidden-Unit for Encoder-Decoder
Based Speech-Text Pre-training [106.34112664893622]
本稿では,音声エンコーダとテキストデコーダの表現を共有単位エンコーダに接続する,統一モーダル音声単位テキスト事前学習モデルであるSpeechUTを提案する。
提案するSpeechUTは,自動音声認識(ASR)と音声翻訳(ST)タスクに基づいて微調整および評価を行う。
論文 参考訳(メタデータ) (2022-10-07T17:57:45Z) - Direct speech-to-speech translation with discrete units [64.19830539866072]
本稿では、中間テキスト生成に頼ることなく、ある言語から別の言語に音声を変換する直接音声音声翻訳(S2ST)モデルを提案する。
そこで本稿では,ラベルなし音声コーパスから学習した自己教師付き離散表現の予測を提案する。
対象のテキスト書き起こしが利用可能となると、同一の推論パスで2つのモード出力(音声とテキスト)を同時に生成できる、共同音声認識とテキストトレーニングを備えたマルチタスク学習フレームワークを設計する。
論文 参考訳(メタデータ) (2021-07-12T17:40:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。