Parameter Estimation in DAGs from Incomplete Data via Optimal Transport
- URL: http://arxiv.org/abs/2305.15927v4
- Date: Sat, 1 Jun 2024 10:53:42 GMT
- Title: Parameter Estimation in DAGs from Incomplete Data via Optimal Transport
- Authors: Vy Vo, Trung Le, Tung-Long Vuong, He Zhao, Edwin Bonilla, Dinh Phung,
- Abstract summary: We develop a theoretical framework and support it with extensive empirical evidence demonstrating the robustness and versatility of our approach.
We show that not only can our method effectively recover the ground-truth parameters but it also performs comparably or better than competing baselines on downstream applications.
- Score: 24.740382124473975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating the parameters of a probabilistic directed graphical model from incomplete data is a long-standing challenge. This is because, in the presence of latent variables, both the likelihood function and posterior distribution are intractable without assumptions about structural dependencies or model classes. While existing learning methods are fundamentally based on likelihood maximization, here we offer a new view of the parameter learning problem through the lens of optimal transport. This perspective licenses a general framework that operates on any directed graphs without making unrealistic assumptions on the posterior over the latent variables or resorting to variational approximations. We develop a theoretical framework and support it with extensive empirical evidence demonstrating the versatility and robustness of our approach. Across experiments, we show that not only can our method effectively recover the ground-truth parameters but it also performs comparably or better than competing baselines on downstream applications.
Related papers
- See Further for Parameter Efficient Fine-tuning by Standing on the Shoulders of Decomposition [56.87609859444084]
parameter-efficient fine-tuning (PEFT) focuses on optimizing a select subset of parameters while keeping the rest fixed, significantly lowering computational and storage overheads.
We take the first step to unify all approaches by dissecting them from a decomposition perspective.
We introduce two novel PEFT methods alongside a simple yet effective framework designed to enhance the performance of PEFT techniques across various applications.
arXiv Detail & Related papers (2024-07-07T15:44:42Z) - Learning from Uncertain Data: From Possible Worlds to Possible Models [13.789554282826835]
We introduce an efficient method for learning linear models from uncertain data, where uncertainty is represented as a set of possible variations in the data.
We compactly represent these dataset variations, enabling the symbolic execution of gradient descent on all possible worlds simultaneously.
Our method provides sound over-approximations of all possible optimal models and viable prediction ranges.
arXiv Detail & Related papers (2024-05-28T19:36:55Z) - Nonparametric Automatic Differentiation Variational Inference with
Spline Approximation [7.5620760132717795]
We develop a nonparametric approximation approach that enables flexible posterior approximation for distributions with complicated structures.
Compared with widely-used nonparametrical inference methods, the proposed method is easy to implement and adaptive to various data structures.
Experiments demonstrate the efficiency of the proposed method in approximating complex posterior distributions and improving the performance of generative models with incomplete data.
arXiv Detail & Related papers (2024-03-10T20:22:06Z) - Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization [29.24821214671497]
Training machine learning and statistical models often involve optimizing a data-driven risk criterion.
We propose a novel robust criterion by combining insights from Bayesian nonparametric (i.e., Dirichlet process) theory and a recent decision-theoretic model of smooth ambiguity-averse preferences.
For practical implementation, we propose and study tractable approximations of the criterion based on well-known Dirichlet process representations.
arXiv Detail & Related papers (2024-01-28T21:19:15Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
offline reinforcement learning approaches can be divided into proximal and uncertainty-aware methods.
In this work, we demonstrate the benefit of combining the two in a latent variational model.
Our proposed metrics measure both the quality of out of distribution samples as well as the discrepancy of examples in the data.
arXiv Detail & Related papers (2021-02-22T19:42:40Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Generative Learning of Heterogeneous Tail Dependence [13.60514494665717]
Our model features heterogeneous and asymmetric tail dependence between all pairs of individual dimensions.
We devise a novel moment learning algorithm to learn the parameters.
Results show that this framework gives better finite-sample performance compared to the copula-based benchmarks.
arXiv Detail & Related papers (2020-11-26T05:34:31Z) - Robust Bayesian Inference for Discrete Outcomes with the Total Variation
Distance [5.139874302398955]
Models of discrete-valued outcomes are easily misspecified if the data exhibit zero-inflation, overdispersion or contamination.
Here, we introduce a robust discrepancy-based Bayesian approach using the Total Variation Distance (TVD)
We empirically demonstrate that our approach is robust and significantly improves predictive performance on a range of simulated and real world data.
arXiv Detail & Related papers (2020-10-26T09:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.