論文の概要: Learning to Act through Evolution of Neural Diversity in Random Neural
Networks
- arxiv url: http://arxiv.org/abs/2305.15945v2
- Date: Thu, 8 Jun 2023 18:26:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-12 16:37:07.927680
- Title: Learning to Act through Evolution of Neural Diversity in Random Neural
Networks
- Title(参考訳): ランダムニューラルネットワークにおける神経多様性の進化を通した学習
- Authors: Joachim Winther Pedersen and Sebastian Risi
- Abstract要約: ほとんどの人工ニューラルネットワーク(ANN)では、神経計算は通常すべてのニューロン間で共有される活性化関数に抽象化される。
本稿では,複雑な計算を行うことができる多様なニューロンの集合を実現するために,神経中心パラメータの最適化を提案する。
- 参考スコア(独自算出の注目度): 9.387749254963595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biological nervous systems consist of networks of diverse, sophisticated
information processors in the form of neurons of different classes. In most
artificial neural networks (ANNs), neural computation is abstracted to an
activation function that is usually shared between all neurons within a layer
or even the whole network; training of ANNs focuses on synaptic optimization.
In this paper, we propose the optimization of neuro-centric parameters to
attain a set of diverse neurons that can perform complex computations.
Demonstrating the promise of the approach, we show that evolving neural
parameters alone allows agents to solve various reinforcement learning tasks
without optimizing any synaptic weights. While not aiming to be an accurate
biological model, parameterizing neurons to a larger degree than the current
common practice, allows us to ask questions about the computational abilities
afforded by neural diversity in random neural networks. The presented results
open up interesting future research directions, such as combining evolved
neural diversity with activity-dependent plasticity.
- Abstract(参考訳): 生物学的神経系は、異なる階層のニューロンの形で、多様で洗練された情報処理装置のネットワークからなる。
ほとんどの人工知能ニューラルネットワーク(ANN)では、ニューラルネットワークは、通常、レイヤ内のすべてのニューロンまたはネットワーク全体の間で共有されるアクティベーション関数に抽象化される。
本稿では,複雑な計算が可能な多様なニューロン群を実現するために,神経中心パラメータの最適化を提案する。
このアプローチの可能性を実証し、進化する神経パラメータだけで、エージェントはシナプス重みを最適化することなく、様々な強化学習タスクを解くことができることを示す。
正確な生物学的モデルを目指してはいないが、ニューロンを現在の一般的な手法よりも大きくパラメータ化することで、ランダムニューラルネットワークにおける神経多様性によって得られる計算能力について質問することができる。
提案した結果は、進化した神経多様性と活動に依存した可塑性を組み合わせるなど、将来の興味深い研究方向を開く。
関連論文リスト
- Retinal Vessel Segmentation via Neuron Programming [17.609169389489633]
本稿では,神経レベルでのネットワークの表現能力を高めるため,ニューラルネット設計における新しいアプローチであるニューラルネットプログラミングについて紹介する。
総合的な実験により、ニューロンプログラミングは網膜の血液分画において競合的な性能を発揮することが検証された。
論文 参考訳(メタデータ) (2024-11-17T16:03:30Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
我々は,側方接続とヘビアン学習に基づくニューラル操作を用いた新しい手法を開発した。
我々は,反復する側方接続におけるヘビアン学習と反ヘビアン学習が,神経活動の主部分空間を効果的に抽出できることを示した。
我々の手法は、ほとんど忘れることなくニューラルネットワークをスパイクするために一貫して解決する。
論文 参考訳(メタデータ) (2024-02-19T09:29:37Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Towards NeuroAI: Introducing Neuronal Diversity into Artificial Neural
Networks [20.99799416963467]
ヒトの脳では、神経の多様性はあらゆる生物学的知的行動に有効である。
本稿では,まず,生物ニューロンの多様性と情報伝達・処理の特徴について論じる。
論文 参考訳(メタデータ) (2023-01-23T02:23:45Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - Brain-inspired Graph Spiking Neural Networks for Commonsense Knowledge
Representation and Reasoning [11.048601659933249]
神経科学、認知科学、心理学、人工知能において、人間の脳におけるニューラルネットワークがどのように常識知識を表現するかは重要な研究トピックである。
本研究は, 個体群エンコーディングとスパイクタイミング依存的可塑性(STDP)機構をスパイクニューラルネットワークの学習に組み込む方法について検討する。
異なるコミュニティのニューロン集団は、コモンセンス知識グラフ全体を構成し、巨大なグラフがニューラルネットワークをスパイクする。
論文 参考訳(メタデータ) (2022-07-11T05:22:38Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Training spiking neural networks using reinforcement learning [0.0]
本稿では,スパイクニューラルネットワークのトレーニングを容易にするために,生物学的に有望なバックプロパゲーション代替法を提案する。
本研究では,空間的・時間的信用割当問題の解決における強化学習規則の適用可能性を検討することに注力する。
我々は、グリッドワールド、カートポール、マウンテンカーといった従来のRLドメインに適用することで、2つのアプローチを比較し、対比する。
論文 参考訳(メタデータ) (2020-05-12T17:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。