論文の概要: Towards NeuroAI: Introducing Neuronal Diversity into Artificial Neural
Networks
- arxiv url: http://arxiv.org/abs/2301.09245v1
- Date: Mon, 23 Jan 2023 02:23:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 14:20:46.329900
- Title: Towards NeuroAI: Introducing Neuronal Diversity into Artificial Neural
Networks
- Title(参考訳): NeuroAI: ニューラルネットワークへの神経多様性の導入
- Authors: Feng-Lei Fan, Yingxin Li, Hanchuan Peng, Tieyong Zeng, Fei Wang
- Abstract要約: ヒトの脳では、神経の多様性はあらゆる生物学的知的行動に有効である。
本稿では,まず,生物ニューロンの多様性と情報伝達・処理の特徴について論じる。
- 参考スコア(独自算出の注目度): 20.99799416963467
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Throughout history, the development of artificial intelligence, particularly
artificial neural networks, has been open to and constantly inspired by the
increasingly deepened understanding of the brain, such as the inspiration of
neocognitron, which is the pioneering work of convolutional neural networks.
Per the motives of the emerging field: NeuroAI, a great amount of neuroscience
knowledge can help catalyze the next generation of AI by endowing a network
with more powerful capabilities. As we know, the human brain has numerous
morphologically and functionally different neurons, while artificial neural
networks are almost exclusively built on a single neuron type. In the human
brain, neuronal diversity is an enabling factor for all kinds of biological
intelligent behaviors. Since an artificial network is a miniature of the human
brain, introducing neuronal diversity should be valuable in terms of addressing
those essential problems of artificial networks such as efficiency,
interpretability, and memory. In this Primer, we first discuss the
preliminaries of biological neuronal diversity and the characteristics of
information transmission and processing in a biological neuron. Then, we review
studies of designing new neurons for artificial networks. Next, we discuss what
gains can neuronal diversity bring into artificial networks and exemplary
applications in several important fields. Lastly, we discuss the challenges and
future directions of neuronal diversity to explore the potential of NeuroAI.
- Abstract(参考訳): 歴史を通じて、人工知能、特に人工知能ニューラルネットワークの開発は、畳み込みニューラルネットワークの先駆的な研究である新認知論のインスピレーションなど、脳の深い理解にオープンであり、常にインスピレーションを受けてきた。
新興分野の動機:neuroai: 膨大な量の神経科学知識は、より強力な能力を持つネットワークを内在させることで、次世代のaiを触媒するのに役立つ。
私たちが知っているように、ヒトの脳は多数の形態的、機能的に異なるニューロンを持ち、人工ニューラルネットワークは単一のニューロンタイプで構築されている。
ヒトの脳では、神経の多様性はあらゆる生物学的知的行動に有効である。
人工ネットワークは人間の脳のミニチュアであるため、効率性、解釈可能性、記憶などの人工ネットワークの本質的な問題に対処する上で、神経多様性を導入することは価値がある。
本プライマーでは,まず生物ニューロンの多様性と情報伝達・処理の特徴について論じる。
次に,人工ネットワークのための新しいニューロンの設計に関する研究について概説する。
次に、ニューロンの多様性が人工ネットワークや重要な分野における模範的応用に何をもたらすかについて議論する。
最後に,ニューロaiの可能性を探るために,神経細胞多様性の課題と今後の方向性について論じる。
関連論文リスト
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
我々は,側方接続とヘビアン学習に基づくニューラル操作を用いた新しい手法を開発した。
我々は,反復する側方接続におけるヘビアン学習と反ヘビアン学習が,神経活動の主部分空間を効果的に抽出できることを示した。
我々の手法は、ほとんど忘れることなくニューラルネットワークをスパイクするために一貫して解決する。
論文 参考訳(メタデータ) (2024-02-19T09:29:37Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
ほとんどの人工ニューラルネットワーク(ANN)では、神経計算は通常すべてのニューロン間で共有される活性化関数に抽象化される。
本稿では,複雑な計算を行うことができる多様なニューロンの集合を実現するために,神経中心パラメータの最適化を提案する。
論文 参考訳(メタデータ) (2023-05-25T11:33:04Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - Brain-inspired Graph Spiking Neural Networks for Commonsense Knowledge
Representation and Reasoning [11.048601659933249]
神経科学、認知科学、心理学、人工知能において、人間の脳におけるニューラルネットワークがどのように常識知識を表現するかは重要な研究トピックである。
本研究は, 個体群エンコーディングとスパイクタイミング依存的可塑性(STDP)機構をスパイクニューラルネットワークの学習に組み込む方法について検討する。
異なるコミュニティのニューロン集団は、コモンセンス知識グラフ全体を構成し、巨大なグラフがニューラルネットワークをスパイクする。
論文 参考訳(メタデータ) (2022-07-11T05:22:38Z) - An Introductory Review of Spiking Neural Network and Artificial Neural
Network: From Biological Intelligence to Artificial Intelligence [4.697611383288171]
生物学的解釈可能性を持つスパイクニューラルネットワークは、徐々に注目を集めている。
このレビューは、さまざまな研究者を惹きつけ、脳にインスパイアされた知性と人工知能の開発を進めたいと考えている。
論文 参考訳(メタデータ) (2022-04-09T09:34:34Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Neural Networks, Artificial Intelligence and the Computational Brain [0.0]
本研究では、生物ニューロンのシミュレータとしてのANNの概念を検討する。
また、なぜ脳のような知能が必要なのか、そしてそれが計算フレームワークとどのように異なるのかを探求する。
論文 参考訳(メタデータ) (2020-12-25T05:56:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。