Accelerated Methods for Riemannian Min-Max Optimization Ensuring Bounded
Geometric Penalties
- URL: http://arxiv.org/abs/2305.16186v2
- Date: Mon, 30 Oct 2023 08:18:29 GMT
- Title: Accelerated Methods for Riemannian Min-Max Optimization Ensuring Bounded
Geometric Penalties
- Authors: David Mart\'inez-Rubio, Christophe Roux, Christopher Criscitiello,
Sebastian Pokutta
- Abstract summary: We study the form $min_x max_y f(x, y) where $mathcalN$ are Hadamard.
We show global interest accelerated by reducing gradient convergence constants.
- Score: 21.141544548229774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we study optimization problems of the form $\min_x \max_y f(x,
y)$, where $f(x, y)$ is defined on a product Riemannian manifold $\mathcal{M}
\times \mathcal{N}$ and is $\mu_x$-strongly geodesically convex (g-convex) in
$x$ and $\mu_y$-strongly g-concave in $y$, for $\mu_x, \mu_y \geq 0$. We design
accelerated methods when $f$ is $(L_x, L_y, L_{xy})$-smooth and $\mathcal{M}$,
$\mathcal{N}$ are Hadamard. To that aim we introduce new g-convex optimization
results, of independent interest: we show global linear convergence for
metric-projected Riemannian gradient descent and improve existing accelerated
methods by reducing geometric constants. Additionally, we complete the analysis
of two previous works applying to the Riemannian min-max case by removing an
assumption about iterates staying in a pre-specified compact set.
Related papers
- Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization [77.3396841985172]
We provide a unified analysis of two-timescale gradient ascent (TTGDA) for solving structured non minimax optimization problems.
Our contribution is to design TTGDA algorithms are effective beyond the setting.
arXiv Detail & Related papers (2024-08-21T20:14:54Z) - A simple and improved algorithm for noisy, convex, zeroth-order optimisation [59.51990161522328]
We construct an algorithm that returns a point $hat xin barmathcal X$ such that $f(hat x)$ is as small as possible.
We prove that this method is such that the $f(hat x) - min_xin barmathcal X f(x)$ is of smaller order than $d2/sqrtn$ up to poly-logarithmic terms.
arXiv Detail & Related papers (2024-06-26T18:19:10Z) - Convergence of a Normal Map-based Prox-SGD Method under the KL
Inequality [0.0]
We present a novel map-based algorithm ($mathsfnorMtext-mathsfSGD$) for $symbol$k$ convergence problems.
arXiv Detail & Related papers (2023-05-10T01:12:11Z) - Optimal Gradient Sliding and its Application to Distributed Optimization
Under Similarity [121.83085611327654]
We structured convex optimization problems with additive objective $r:=p + q$, where $r$ is $mu$-strong convex similarity.
We proposed a method to solve problems master to agents' communication and local calls.
The proposed method is much sharper than the $mathcalO(sqrtL_q/mu)$ method.
arXiv Detail & Related papers (2022-05-30T14:28:02Z) - Lifted Primal-Dual Method for Bilinearly Coupled Smooth Minimax
Optimization [47.27237492375659]
We study the bilinearly coupled minimax problem: $min_x max_y f(x) + ytop A x - h(y)$, where $f$ and $h$ are both strongly convex smooth functions.
No known first-order algorithms have hitherto achieved the lower complexity bound of $Omega(sqrtfracL_xmu_x + frac|A|sqrtmu_x,mu_y) log(frac1vareps
arXiv Detail & Related papers (2022-01-19T05:56:19Z) - A first-order primal-dual method with adaptivity to local smoothness [64.62056765216386]
We consider the problem of finding a saddle point for the convex-concave objective $min_x max_y f(x) + langle Ax, yrangle - g*(y)$, where $f$ is a convex function with locally Lipschitz gradient and $g$ is convex and possibly non-smooth.
We propose an adaptive version of the Condat-Vu algorithm, which alternates between primal gradient steps and dual steps.
arXiv Detail & Related papers (2021-10-28T14:19:30Z) - Fast Graph Sampling for Short Video Summarization using Gershgorin Disc
Alignment [52.577757919003844]
We study the problem of efficiently summarizing a short video into several paragraphs, leveraging recent progress in fast graph sampling.
Experimental results show that our algorithm achieves comparable video summarization as state-of-the-art methods, at a substantially reduced complexity.
arXiv Detail & Related papers (2021-10-21T18:43:00Z) - Minimax Optimal Regression over Sobolev Spaces via Laplacian
Regularization on Neighborhood Graphs [25.597646488273558]
We study the statistical properties of Laplacian smoothing, a graph-based approach to nonparametric regression.
We prove that Laplacian smoothing is manifold-adaptive.
arXiv Detail & Related papers (2021-06-03T01:20:41Z) - Convergence Rate of the (1+1)-Evolution Strategy with Success-Based
Step-Size Adaptation on Convex Quadratic Functions [20.666734673282498]
The (1+1)-evolution strategy (ES) with success-based step-size adaptation is analyzed on a general convex quadratic function.
The convergence rate of the (1+1)-ES is derived explicitly and rigorously on a general convex quadratic function.
arXiv Detail & Related papers (2021-03-02T09:03:44Z) - Unconstrained optimisation on Riemannian manifolds [0.0]
We give explicit descriptions of versions of (Local-) Backtracking Gradient Descent and New Q-Newton's method.
We also do explicit calculations for calculating the smallest eigenvalue of a symmetric square matrix.
arXiv Detail & Related papers (2020-08-25T15:10:21Z) - On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems [86.92205445270427]
We consider non-con minimax problems, $min_mathbfx max_mathhidoty f(mathbfdoty)$ efficiently.
arXiv Detail & Related papers (2019-06-02T03:03:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.