論文の概要: Trans-Dimensional Generative Modeling via Jump Diffusion Models
- arxiv url: http://arxiv.org/abs/2305.16261v2
- Date: Mon, 30 Oct 2023 10:14:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-02 02:14:25.726898
- Title: Trans-Dimensional Generative Modeling via Jump Diffusion Models
- Title(参考訳): ジャンプ拡散モデルによるトランス次元生成モデル
- Authors: Andrew Campbell, William Harvey, Christian Weilbach, Valentin De
Bortoli, Tom Rainforth, Arnaud Doucet
- Abstract要約: 本稿では,様々な次元のデータを自然に扱う生成モデルの新たなクラスを提案する。
まず、時間反転生成過程を生成する次元を導出する前に、前方ノイズ発生過程を破壊する次元を定義する。
時間反転生成過程に対する学習近似をシミュレーションし、様々な次元のデータをサンプリングする効果的な方法を提供する。
- 参考スコア(独自算出の注目度): 46.183265841345644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new class of generative models that naturally handle data of
varying dimensionality by jointly modeling the state and dimension of each
datapoint. The generative process is formulated as a jump diffusion process
that makes jumps between different dimensional spaces. We first define a
dimension destroying forward noising process, before deriving the dimension
creating time-reversed generative process along with a novel evidence lower
bound training objective for learning to approximate it. Simulating our learned
approximation to the time-reversed generative process then provides an
effective way of sampling data of varying dimensionality by jointly generating
state values and dimensions. We demonstrate our approach on molecular and video
datasets of varying dimensionality, reporting better compatibility with
test-time diffusion guidance imputation tasks and improved interpolation
capabilities versus fixed dimensional models that generate state values and
dimensions separately.
- Abstract(参考訳): 本稿では,各データポイントの状態と次元を共同でモデル化することにより,異なる次元のデータを自然に扱う新しい生成モデルを提案する。
生成過程は、異なる次元空間の間をジャンプするジャンプ拡散過程として定式化される。
まず, 時間反転生成過程を生成する次元と, 近似する学習のための新しいエビデンスの下限学習目標を導出する前に, フォワードノジング過程を壊す次元を定義する。
時間反転生成過程に対する学習近似をシミュレーションし、状態値と次元を共同生成することにより、様々な次元のデータをサンプリングする効果的な方法を提供する。
我々は,様々な次元の分子およびビデオデータセットに対する我々のアプローチを実証し,実験時間拡散誘導インプテーションタスクとの適合性の向上と,状態値と次元を別々に生成する固定次元モデルとの補間能力の向上を報告した。
関連論文リスト
- Towards Model-Agnostic Dataset Condensation by Heterogeneous Models [13.170099297210372]
我々は,クロスモデル相互作用により,普遍的に適用可能なコンデンサ画像を生成する新しい手法を開発した。
モデルのコントリビューションのバランスとセマンティックな意味の密接な維持により,本手法は,モデル固有凝縮画像に関連する制約を克服する。
論文 参考訳(メタデータ) (2024-09-22T17:13:07Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Private Gradient Estimation is Useful for Generative Modeling [25.777591229903596]
そこで本研究では,サンプルをハミルトン力学で生成し,よく訓練されたネットワークから推定したプライベートデータセットの勾配を推定する手法を提案する。
我々のモデルは256x256の解像度でデータを生成することができる。
論文 参考訳(メタデータ) (2023-05-18T02:51:17Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Multilevel Diffusion: Infinite Dimensional Score-Based Diffusion Models for Image Generation [2.5556910002263984]
スコアベース拡散モデル (SBDM) は画像生成のための最先端のアプローチとして登場した。
本稿では, 無限次元のSBDM, すなわち, 矩形領域でサポートされている関数としてトレーニングデータをモデル化する。
無限次元設定において、現在のSBDMアプローチの2つの欠点を克服する方法を実証する。
論文 参考訳(メタデータ) (2023-03-08T18:10:10Z) - Data-driven low-dimensional dynamic model of Kolmogorov flow [0.0]
流れのダイナミクスを捉える低次モデル (ROM) はシミュレーションの計算コストの削減に重要である。
この研究は、フローのダイナミクスと特性を効果的にキャプチャする最小次元モデルのためのデータ駆動フレームワークを示す。
我々はこれをカオス的かつ断続的な行動からなる体制におけるコルモゴロフ流に適用する。
論文 参考訳(メタデータ) (2022-10-29T23:05:39Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows [40.9137348900942]
ウィナー過程の微分変形によって駆動される新しいタイプの流れを提案する。
その結果,観測可能なプロセスが基本プロセスの魅力的な特性の多くを継承するリッチ時系列モデルが得られた。
論文 参考訳(メタデータ) (2020-02-24T20:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。