論文の概要: CommonScenes: Generating Commonsense 3D Indoor Scenes with Scene Graphs
- arxiv url: http://arxiv.org/abs/2305.16283v1
- Date: Thu, 25 May 2023 17:39:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 13:21:21.154765
- Title: CommonScenes: Generating Commonsense 3D Indoor Scenes with Scene Graphs
- Title(参考訳): CommonScenes: シーングラフによるCommonsense 3D屋内シーンの生成
- Authors: Guangyao Zhai, Evin Pinar \"Ornek, Shun-Cheng Wu, Yan Di, Federico
Tombari, Nassir Navab, Benjamin Busam
- Abstract要約: シーングラフを対応する制御可能な3Dシーンに変換する完全生成モデルであるCommonScenesを提案する。
パイプラインは2つのブランチで構成されており、1つは変分オートエンコーダでシーン全体のレイアウトを予測し、もう1つは互換性のある形状を生成する。
生成されたシーンは、入力シーングラフを編集し、拡散モデルのノイズをサンプリングすることで操作することができる。
- 参考スコア(独自算出の注目度): 73.36019510762112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Controllable scene synthesis aims to create interactive environments for
various industrial use cases. Scene graphs provide a highly suitable interface
to facilitate these applications by abstracting the scene context in a compact
manner. Existing methods, reliant on retrieval from extensive databases or
pre-trained shape embeddings, often overlook scene-object and object-object
relationships, leading to inconsistent results due to their limited generation
capacity. To address this issue, we present CommonScenes, a fully generative
model that converts scene graphs into corresponding controllable 3D scenes,
which are semantically realistic and conform to commonsense. Our pipeline
consists of two branches, one predicting the overall scene layout via a
variational auto-encoder and the other generating compatible shapes via latent
diffusion, capturing global scene-object and local inter-object relationships
while preserving shape diversity. The generated scenes can be manipulated by
editing the input scene graph and sampling the noise in the diffusion model.
Due to lacking a scene graph dataset offering high-quality object-level meshes
with relations, we also construct SG-FRONT, enriching the off-the-shelf indoor
dataset 3D-FRONT with additional scene graph labels. Extensive experiments are
conducted on SG-FRONT where CommonScenes shows clear advantages over other
methods regarding generation consistency, quality, and diversity. Codes and the
dataset will be released upon acceptance.
- Abstract(参考訳): 制御可能なシーン合成は,様々な産業用途を対象とした対話型環境の構築を目的としている。
シーングラフは、シーンコンテキストをコンパクトに抽象化することでこれらのアプリケーションを容易にするのに非常に適したインターフェースを提供する。
既存の手法は、広範囲のデータベースや事前学習された形状埋め込みからの検索に依存しており、しばしばシーン-オブジェクトとオブジェクト-オブジェクトの関係を見落としている。
この問題に対処するため,我々は,シーングラフを対応する制御可能な3dシーンに変換する完全生成モデルであるcommonscenesを提案する。
我々のパイプラインは2つの枝から構成されており、1つは変分オートエンコーダで全体のシーンレイアウトを予測し、もう1つは潜時拡散により互換性のある形状を生成する。
生成したシーンは、入力シーングラフを編集し、拡散モデルのノイズをサンプリングすることで操作できる。
高品質なオブジェクトレベルのメッシュと関係性を提供するシーングラフデータセットが欠如しているため、SG-FRONTを構築することで、既製の屋内データセット3D-FRONTを付加的なシーングラフラベルで強化する。
SG-FRONTでは、生成一貫性、品質、多様性に関する他の手法に対して、CommonScenesが明確な優位性を示す。
コードとデータセットは受け入れ時にリリースされる。
関連論文リスト
- Mixed Diffusion for 3D Indoor Scene Synthesis [55.94569112629208]
混合離散連続拡散モデルアーキテクチャであるMiDiffusionを提案する。
シーンレイアウトを2次元のフロアプランとオブジェクトの集合で表現し、それぞれがそのカテゴリ、場所、サイズ、方向で定義する。
実験により,MiDiffusionは床条件下での3次元シーン合成において,最先端の自己回帰モデルや拡散モデルよりもかなり優れていることが示された。
論文 参考訳(メタデータ) (2024-05-31T17:54:52Z) - EchoScene: Indoor Scene Generation via Information Echo over Scene Graph Diffusion [77.0556470600979]
シーングラフ上に3次元屋内シーンを生成する対話型かつ制御可能な生成モデルであるEchoSceneを提案する。
既存の手法では、様々なノード数、複数のエッジの組み合わせ、マニピュレータによるノードエッジ操作によるシーングラフの処理に苦労している。
論文 参考訳(メタデータ) (2024-05-02T00:04:02Z) - 3D scene generation from scene graphs and self-attention [51.49886604454926]
本稿では,シーングラフとフロアプランから3次元シーンを合成する条件付き変分オートエンコーダ(cVAE)モデルを提案する。
我々は、シーン内のオブジェクト間の高レベルな関係をキャプチャするために、自己注意層の特性を利用する。
論文 参考訳(メタデータ) (2024-04-02T12:26:17Z) - Planner3D: LLM-enhanced graph prior meets 3D indoor scene explicit regularization [31.52569918586902]
3Dシーンの合成は、ロボティクス、映画、ビデオゲームといった様々な産業に多様な応用がある。
本稿では,シーングラフからリアルで合理的な屋内シーンを生成することを目的とする。
本手法は,特にシーンレベルの忠実度の観点から,より優れた3次元シーン合成を実現する。
論文 参考訳(メタデータ) (2024-03-19T15:54:48Z) - 3D Scene Diffusion Guidance using Scene Graphs [3.207455883863626]
本研究では,シーングラフを用いた3次元シーン拡散誘導手法を提案する。
シーングラフが提供する相対的空間情報を活用するため,我々はデノナイジングネットワーク内の関係グラフ畳み込みブロックを利用する。
論文 参考訳(メタデータ) (2023-08-08T06:16:37Z) - SGAligner : 3D Scene Alignment with Scene Graphs [84.01002998166145]
3Dシーングラフの構築は、いくつかの具体的AIアプリケーションのためのシーン表現のトピックとして登場した。
オーバーラップ可能な3次元シーングラフのペアをゼロから部分的に整列させるという基本的な問題に着目する。
そこで我々はSGAlignerを提案する。SGAlignerは3次元シーングラフのペアを組合わせるための最初の方法であり、その組込みシナリオに対して堅牢である。
論文 参考訳(メタデータ) (2023-04-28T14:39:22Z) - Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes Using
Scene Graphs [85.54212143154986]
制御可能なシーン合成は、基本的な仕様を満たす3D情報を生成することで構成される。
シーングラフは、オブジェクト(ノード)とオブジェクト間の関係(エッジ)からなるシーンの表現である
本稿では,シーングラフから形状を直接エンドツーエンドに生成する手法を提案する。
論文 参考訳(メタデータ) (2021-08-19T17:59:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。