論文の概要: Alert of the Second Decision-maker: An Introduction to Human-AI Conflict
- arxiv url: http://arxiv.org/abs/2305.16477v1
- Date: Thu, 25 May 2023 21:15:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-29 18:18:01.494053
- Title: Alert of the Second Decision-maker: An Introduction to Human-AI Conflict
- Title(参考訳): 第2の意思決定者:人間とAIの対立の序論
- Authors: He Wen
- Abstract要約: 人間と人工知能(AI)は、同期して働くときに観察、解釈、行動の衝突を持つことがある。
本稿では,人間とAIの対立概念,原因,測定方法,リスク評価を体系的に紹介する。
- 参考スコア(独自算出の注目度): 3.9596068699962323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The collaboration between humans and artificial intelligence (AI) is a
significant feature in this digital age. However, humans and AI may have
observation, interpretation, and action conflicts when working synchronously.
This phenomenon is often masked by faults and, unfortunately, overlooked. This
paper systematically introduces the human-AI conflict concept, causes,
measurement methods, and risk assessment. The results highlight that there is a
potential second decision-maker besides the human, which is the AI; the
human-AI conflict is a unique and emerging risk in digitalized process systems;
and this is an interdisciplinary field that needs to be distinguished from
traditional fault and failure analysis; the conflict risk is significant and
cannot be ignored.
- Abstract(参考訳): 人間と人工知能(AI)の協力は、このデジタル時代の重要な特徴である。
しかし、人間とAIは、同期して働くときに観察、解釈、行動の衝突があるかもしれない。
この現象はしばしば欠陥によって覆い隠され、残念ながら見過ごされている。
本稿では,人間とAIの対立概念,原因,測定方法,リスク評価を体系的に紹介する。
結果は、AIである人間の他に、潜在的な第2の意思決定者が存在すること、デジタル化されたプロセスシステムにおいて、人間とAIの対立はユニークかつ新たなリスクであり、これは従来の障害や障害分析と区別される必要がある学際的な分野である。
関連論文リスト
- Aligning Generalisation Between Humans and Machines [74.120848518198]
近年のAIの進歩は、科学的発見と意思決定支援において人間を支援できる技術をもたらしたが、民主主義と個人を妨害する可能性がある。
AIの責任ある使用は、ますます人間とAIのチームの必要性を示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - Problem Solving Through Human-AI Preference-Based Cooperation [74.39233146428492]
我々は,人間-AI共同構築フレームワークであるHAI-Co2を提案する。
我々は、HAI-Co2を形式化し、それが直面する困難なオープンリサーチ問題について議論する。
本稿では,HAI-Co2のケーススタディと,モノリシックな生成型AIモデルとの比較による有効性を示す。
論文 参考訳(メタデータ) (2024-08-14T11:06:57Z) - Rolling in the deep of cognitive and AI biases [1.556153237434314]
我々は、AIが設計、開発、デプロイされる状況とは切り離せない社会技術システムとして理解する必要があると論じる。
我々は、人間の認知バイアスがAIフェアネスの概観の中核となる急進的な新しい方法論に従うことで、この問題に対処する。
我々は、人間にAIバイアスを正当化する新しいマッピングを導入し、関連する公正度と相互依存を検出する。
論文 参考訳(メタデータ) (2024-07-30T21:34:04Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
近年のAIの進歩は、AIシステムを意図された目標、倫理的原則、個人とグループの価値に向けて導くことの重要性を強調している。
人間のAIアライメントの明確な定義とスコープの欠如は、このアライメントを達成するための研究領域間の共同作業を妨げる、大きな障害となる。
我々は、2019年から2024年1月までに400以上の論文を体系的にレビューし、HCI(Human-Computer Interaction)、自然言語処理(NLP)、機械学習(ML)といった複数の分野にまたがって紹介する。
論文 参考訳(メタデータ) (2024-06-13T16:03:25Z) - Human-AI Safety: A Descendant of Generative AI and Control Systems Safety [6.100304850888953]
先進的なAI技術に対する有意義な安全性保証には、AI出力と人間の振る舞いによって形成されるフィードバックループが、どのようにして異なる結果に向かって相互作用を駆動するかについての推論が必要である、と我々は主張する。
我々は、次世代の人間中心AI安全性に向けた具体的な技術ロードマップを提案する。
論文 参考訳(メタデータ) (2024-05-16T03:52:00Z) - On the Perception of Difficulty: Differences between Humans and AI [0.0]
人間とAIの相互作用における主要な課題は、単一のタスクインスタンスに対する人間とAIエージェントの難しさを見積もることである。
人間とAIの相互作用の分野での研究は、人間とAIの認識の難しさを互いに独立して推定する。
これまでの研究は、人間とAIの認識の難しさの違いを十分に検証していない。
論文 参考訳(メタデータ) (2023-04-19T16:42:54Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Human Uncertainty in Concept-Based AI Systems [37.82747673914624]
概念に基づくAIシステムのコンテキストにおける人間の不確実性について検討する。
不確実な概念ラベルによるトレーニングは、概念ベースシステムにおける弱点を軽減するのに役立つ可能性がある。
論文 参考訳(メタデータ) (2023-03-22T19:17:57Z) - A Mental-Model Centric Landscape of Human-AI Symbiosis [31.14516396625931]
我々は、GHAI(Generalized Human-Aware Interaction)と呼ばれる、ヒューマン・アウェア・AIインタラクション・スキームの極めて一般的なバージョンを導入する。
この新しいフレームワークによって、人間とAIのインタラクションの空間で達成されたさまざまな作業が捕捉され、これらの作業によって支えられる基本的な行動パターンが特定できるかどうかを確認します。
論文 参考訳(メタデータ) (2022-02-18T22:08:08Z) - Adversarial Interaction Attack: Fooling AI to Misinterpret Human
Intentions [46.87576410532481]
現在の大きな成功にもかかわらず、ディープラーニングベースのAIシステムは、微妙な敵対的ノイズによって容易に騙されることを示した。
骨格に基づくヒトの相互作用のケーススタディに基づき、相互作用に対する新しい敵対的攻撃を提案する。
本研究では、安全クリティカルなアプリケーションにAIシステムをデプロイする際に慎重に対処する必要があるAIと人間との相互作用ループにおける潜在的なリスクを強調します。
論文 参考訳(メタデータ) (2021-01-17T16:23:20Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。