論文の概要: Problem Solving Through Human-AI Preference-Based Cooperation
- arxiv url: http://arxiv.org/abs/2408.07461v3
- Date: Mon, 11 Nov 2024 11:44:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:03:54.338038
- Title: Problem Solving Through Human-AI Preference-Based Cooperation
- Title(参考訳): 人間とAIの嗜好に基づく協調による問題解決
- Authors: Subhabrata Dutta, Timo Kaufmann, Goran Glavaš, Ivan Habernal, Kristian Kersting, Frauke Kreuter, Mira Mezini, Iryna Gurevych, Eyke Hüllermeier, Hinrich Schuetze,
- Abstract要約: 我々は,人間-AI共同構築フレームワークであるHAI-Co2を提案する。
我々は、HAI-Co2を形式化し、それが直面する困難なオープンリサーチ問題について議論する。
本稿では,HAI-Co2のケーススタディと,モノリシックな生成型AIモデルとの比較による有効性を示す。
- 参考スコア(独自算出の注目度): 74.39233146428492
- License:
- Abstract: While there is a widespread belief that artificial general intelligence (AGI) -- or even superhuman AI -- is imminent, complex problems in expert domains are far from being solved. We argue that such problems require human-AI cooperation and that the current state of the art in generative AI is unable to play the role of a reliable partner due to a multitude of shortcomings, including inability to keep track of a complex solution artifact (e.g., a software program), limited support for versatile human preference expression and lack of adapting to human preference in an interactive setting. To address these challenges, we propose HAI-Co2, a novel human-AI co-construction framework. We formalize HAI-Co2 and discuss the difficult open research problems that it faces. Finally, we present a case study of HAI-Co2 and demonstrate its efficacy compared to monolithic generative AI models.
- Abstract(参考訳): 人工知能(AGI)や超人的AI(超人的AI)が差し迫っていると広く信じられているが、専門家ドメインの複雑な問題は解決されるには程遠い。
このような問題には人間とAIの協力が必要であり、複雑なソリューションアーティファクト(例えばソフトウェアプログラム)の追跡ができないことや、多目的な人間の嗜好表現へのサポートの制限、対話的な環境での人間の嗜好に適応できないことなど、数多くの欠点により、生成AIにおける現在の最先端技術は信頼できるパートナーの役割を果たせないと我々は主張する。
これらの課題に対処するため,人間とAIの新たな共同構築フレームワークであるHAI-Co2を提案する。
我々は、HAI-Co2を形式化し、それが直面する困難なオープンリサーチ問題について議論する。
最後に,HAI-Co2のケーススタディを示し,モノリシックな生成型AIモデルと比較して有効性を示した。
関連論文リスト
- "I Am the One and Only, Your Cyber BFF": Understanding the Impact of GenAI Requires Understanding the Impact of Anthropomorphic AI [55.99010491370177]
我々は、人為的AIの社会的影響をマッピングしない限り、生成AIの社会的影響を徹底的にマッピングすることはできないと論じる。
人為的AIシステムは、人間のように知覚されるアウトプットを生成する傾向が強まっている。
論文 参考訳(メタデータ) (2024-10-11T04:57:41Z) - The Model Mastery Lifecycle: A Framework for Designing Human-AI Interaction [0.0]
ますます多くの分野におけるAIの利用は、長いプロセスの最新のイテレーションである。
異なる状況でAIをどのように使うべきかを決定する方法が緊急に必要である。
論文 参考訳(メタデータ) (2024-08-23T01:00:32Z) - Attaining Human`s Desirable Outcomes in Human-AI Interaction via Structural Causal Games [34.34801907296059]
人間とAIの相互作用において、顕著なゴールは、AIエージェントの助けを借りて、人間が望ましい結果を達成することである。
我々は、人間とAIの対話プロセスを形式化するために、構造因果ゲーム(SCG)と呼ばれる理論的枠組みを用いる。
我々は、AIエージェントを操り、人間に望ましい結果を得るための、SCGに対する事前政治介入と呼ばれる戦略を導入する。
論文 参考訳(メタデータ) (2024-05-26T14:42:49Z) - Applying HCAI in developing effective human-AI teaming: A perspective
from human-AI joint cognitive systems [10.746728034149989]
研究と応用は、AIシステムを開発するための新しいパラダイムとして、HAT(Human-AI Teaming)を使用している。
我々は,人間とAIの協調認知システム(HAIJCS)の概念的枠組みについて詳しく検討する。
本稿では,HATを表現・実装するためのヒューマンAI共同認知システム(HAIJCS)の概念的枠組みを提案する。
論文 参考訳(メタデータ) (2023-07-08T06:26:38Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AIは、人間とAIアルゴリズムが相互に連続的に影響を及ぼすプロセスである。
本稿では,AIと複雑性科学の交点における新たな研究分野の基盤として,Coevolution AIを紹介した。
論文 参考訳(メタデータ) (2023-06-23T18:10:54Z) - BO-Muse: A human expert and AI teaming framework for accelerated
experimental design [58.61002520273518]
我々のアルゴリズムは、人間の専門家が実験プロセスでリードすることを可能にする。
我々のアルゴリズムは、AIや人間よりも高速に、サブ線形に収束することを示す。
論文 参考訳(メタデータ) (2023-03-03T02:56:05Z) - AI-HRI Brings New Dimensions to Human-Aware Design for Human-Aware AI [2.512827436728378]
我々は、AI-HRIが研究者の人間の認識するAIに対する考え方を変える方法について検討する。
現時点では、人間の認識するAIよりも視点を共有する機会はない。
論文 参考訳(メタデータ) (2022-10-21T09:25:06Z) - A Mental-Model Centric Landscape of Human-AI Symbiosis [31.14516396625931]
我々は、GHAI(Generalized Human-Aware Interaction)と呼ばれる、ヒューマン・アウェア・AIインタラクション・スキームの極めて一般的なバージョンを導入する。
この新しいフレームワークによって、人間とAIのインタラクションの空間で達成されたさまざまな作業が捕捉され、これらの作業によって支えられる基本的な行動パターンが特定できるかどうかを確認します。
論文 参考訳(メタデータ) (2022-02-18T22:08:08Z) - On some Foundational Aspects of Human-Centered Artificial Intelligence [52.03866242565846]
人間中心人工知能(Human Centered Artificial Intelligence)の意味については明確な定義はない。
本稿では,AIコンポーネントを備えた物理・ソフトウェア計算エージェントを指すHCAIエージェントについて紹介する。
HCAIエージェントの概念は、そのコンポーネントや機能とともに、人間中心のAIに関する技術的および非技術的議論を橋渡しする手段であると考えています。
論文 参考訳(メタデータ) (2021-12-29T09:58:59Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。