論文の概要: EgoHumans: An Egocentric 3D Multi-Human Benchmark
- arxiv url: http://arxiv.org/abs/2305.16487v1
- Date: Thu, 25 May 2023 21:37:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-29 18:08:17.777677
- Title: EgoHumans: An Egocentric 3D Multi-Human Benchmark
- Title(参考訳): EgoHumans:エゴセントリックな3Dマルチヒューマンベンチマーク
- Authors: Rawal Khirodkar, Aayush Bansal, Lingni Ma, Richard Newcombe, Minh Vo,
Kris Kitani
- Abstract要約: EgoHumansは、エゴセントリックな人間の3Dポーズ推定と追跡の最先端化を図るために、新しいマルチビューマルチヒューマンビデオベンチマークである。
本研究では,エゴセントリックなマルチヒューマン・ベンチマークを構築するために,新しい3Dキャプチャ・セットアップを提案する。
コンシューマグレードのウェアラブルカメラ搭載メガネを、エゴセントリックな視点に活用することで、サッカーやフェンシング、バレーボールなど、ダイナミックなアクティビティを捉えることができます。
- 参考スコア(独自算出の注目度): 31.258752629567578
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present EgoHumans, a new multi-view multi-human video benchmark to advance
the state-of-the-art of egocentric human 3D pose estimation and tracking.
Existing egocentric benchmarks either capture single subject or indoor-only
scenarios, which limit the generalization of computer vision algorithms for
real-world applications. We propose a novel 3D capture setup to construct a
comprehensive egocentric multi-human benchmark in the wild with annotations to
support diverse tasks such as human detection, tracking, 2D/3D pose estimation,
and mesh recovery. We leverage consumer-grade wearable camera-equipped glasses
for the egocentric view, which enables us to capture dynamic activities like
playing soccer, fencing, volleyball, etc. Furthermore, our multi-view setup
generates accurate 3D ground truth even under severe or complete occlusion. The
dataset consists of more than 125k egocentric images, spanning diverse scenes
with a particular focus on challenging and unchoreographed multi-human
activities and fast-moving egocentric views. We rigorously evaluate existing
state-of-the-art methods and highlight their limitations in the egocentric
scenario, specifically on multi-human tracking. To address such limitations, we
propose EgoFormer, a novel approach with a multi-stream transformer
architecture and explicit 3D spatial reasoning to estimate and track the human
pose. EgoFormer significantly outperforms prior art by 13.6% IDF1 and 9.3 HOTA
on the EgoHumans dataset.
- Abstract(参考訳): EgoHumansは、エゴセントリックな人間の3Dポーズ推定と追跡の最先端化を図るために、新しいマルチビューマルチヒューマンビデオベンチマークである。
既存のエゴセントリックベンチマークは、1つの主題または屋内のみのシナリオをキャプチャし、現実のアプリケーションに対するコンピュータビジョンアルゴリズムの一般化を制限する。
本稿では,人間検出,追跡,2d/3dポーズ推定,メッシュリカバリといった多様なタスクをサポートするアノテーションを備えた,総合的な自己中心型マルチヒューマンベンチマークを構築するための,新たな3dキャプチャセットアップを提案する。
私たちは、サッカー、フェンシング、バレーボールなどの動的なアクティビティを捉えるために、消費者向けのカメラ付きメガネをエゴセントリックビューに活用しています。
さらに,重度の咬合や完全咬合下でも正確な3次元地中真実を再現する。
データセットは125万以上のエゴセントリックなイメージで構成され、さまざまなシーンにまたがって、挑戦的でコレオグラフィのないマルチヒューマンアクティビティと、高速に動くエゴセントリックなビューに焦点を当てている。
我々は,既存の最先端手法を厳格に評価し,そのエゴセントリックなシナリオ,特にマルチヒューマントラッキングにおける限界を強調する。
このような制約に対処するために,マルチストリームトランスフォーマーアーキテクチャと明示的な3次元空間推論を用いた新しいアプローチである egoformer を提案する。
egoformer は egohumans データセットで 13.6% の idf1 と 9.3 hota の先行技術を大きく上回っている。
関連論文リスト
- Ego3DT: Tracking Every 3D Object in Ego-centric Videos [20.96550148331019]
本稿では,エゴ中心映像からの物体の3次元再構成と追跡のための新しいゼロショット手法を提案する。
Ego3DTは,エゴ環境内のオブジェクトの検出とセグメンテーション情報を最初に識別し,抽出する新しいフレームワークである。
また,エゴ中心ビデオにおける物体の3次元追跡軌道を安定的に作成するための動的階層化機構を革新した。
論文 参考訳(メタデータ) (2024-10-11T05:02:31Z) - EgoAvatar: Egocentric View-Driven and Photorealistic Full-body Avatars [56.56236652774294]
本研究では,光合成デジタルアバターを共同でモデル化し,同時に1つの自我中心映像から駆動する人物中心型テレプレゼンス手法を提案する。
提案手法は,エゴセントリック・フォトリアル・テレプレゼンスへの明確な一歩として,ベースラインと競合する手法に優れることを示す。
論文 参考訳(メタデータ) (2024-09-22T22:50:27Z) - EgoGen: An Egocentric Synthetic Data Generator [53.32942235801499]
EgoGenは新しい合成データジェネレータで、エゴセントリックな知覚タスクのための正確でリッチな地上訓練データを生成することができる。
EgoGenの中心となるのは、仮想人間の自我中心の視覚入力を直接利用して3D環境を感知する、新しい人間のモーション合成モデルである。
我々は、ヘッドマウントカメラのマッピングとローカライゼーション、エゴセントリックカメラトラッキング、エゴセントリックビューからのヒューマンメッシュリカバリの3つのタスクで、EgoGenの有効性を実証する。
論文 参考訳(メタデータ) (2024-01-16T18:55:22Z) - 3D Human Pose Perception from Egocentric Stereo Videos [67.9563319914377]
我々は,エゴセントリックな立体3次元ポーズ推定を改善するためのトランスフォーマーベースの新しいフレームワークを提案する。
本手法は, しゃがんだり座ったりといった困難なシナリオにおいても, 人間のポーズを正確に推定することができる。
私たちはUnrealEgo2、UnrealEgo-RW、およびトレーニングされたモデルをプロジェクトページでリリースします。
論文 参考訳(メタデータ) (2023-12-30T21:21:54Z) - Scene-aware Egocentric 3D Human Pose Estimation [72.57527706631964]
頭部に1台の魚眼カメラを装着したエゴセントリックな3Dポーズ推定は、仮想現実や拡張現実における多くの応用により、近年注目を集めている。
既存の方法はまだ、人間の体が非常に隠蔽されている、あるいはシーンと密接な相互作用がある、挑戦的なポーズに苦慮している。
本研究では,シーン制約による自己中心型ポーズの予測を導くシーン認識型自己中心型ポーズ推定手法を提案する。
論文 参考訳(メタデータ) (2022-12-20T21:35:39Z) - Ego-Body Pose Estimation via Ego-Head Pose Estimation [22.08240141115053]
エゴセントリックなビデオシーケンスから3次元の人間の動きを推定することは、人間の行動理解において重要な役割を担い、VR/ARに様々な応用がある。
Ego-Head Pose Estimation (EgoEgo) と呼ばれる新しい手法を提案する。
この頭と体のポーズのゆがみは、ペア化されたエゴセントリックなビデオと3D人間の動きでデータセットをトレーニングする必要をなくす。
論文 参考訳(メタデータ) (2022-12-09T02:25:20Z) - UnrealEgo: A New Dataset for Robust Egocentric 3D Human Motion Capture [70.59984501516084]
UnrealEgoは、エゴセントリックな3Dポーズ推定のための、新しい大規模博物学データセットである。
これは、2台の魚眼カメラを備えた高度な眼鏡のコンセプトに基づいており、制約のない環境で使用することができる。
本稿では,ステレオ入力のための2次元キーポイント推定モジュールを考案し,人間のポーズ推定を改善するための簡易かつ効果的なベンチマーク手法を提案する。
論文 参考訳(メタデータ) (2022-08-02T17:59:54Z) - Estimating Egocentric 3D Human Pose in the Wild with External Weak
Supervision [72.36132924512299]
本稿では,大規模な自己中心型データセットでトレーニング可能な,新たな自己中心型ポーズ推定手法を提案する。
本研究では,事前学習された外部視点のポーズ推定モデルにより抽出された高品質な特徴を用いて,エゴセントリックな特徴を監督する新しい学習戦略を提案する。
実験により,本手法は,1つの画像から正確な3Dポーズを予測し,定量的,定性的に,最先端の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-01-20T00:45:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。