論文の概要: Reward-Machine-Guided, Self-Paced Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2305.16505v1
- Date: Thu, 25 May 2023 22:13:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-29 17:57:42.870528
- Title: Reward-Machine-Guided, Self-Paced Reinforcement Learning
- Title(参考訳): 報酬機械誘導・自己ペース強化学習
- Authors: Cevahir Koprulu and Ufuk Topcu
- Abstract要約: 報奨機による自己評価強化学習アルゴリズムを開発した。
提案アルゴリズムは,既存のベースラインが意味のある進歩を達成できない場合でも,最適な動作を確実に達成する。
また、カリキュラムの長さを減らし、カリキュラム生成プロセスのばらつきを最大4分の1まで減らします。
- 参考スコア(独自算出の注目度): 30.42334205249944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-paced reinforcement learning (RL) aims to improve the data efficiency of
learning by automatically creating sequences, namely curricula, of probability
distributions over contexts. However, existing techniques for self-paced RL
fail in long-horizon planning tasks that involve temporally extended behaviors.
We hypothesize that taking advantage of prior knowledge about the underlying
task structure can improve the effectiveness of self-paced RL. We develop a
self-paced RL algorithm guided by reward machines, i.e., a type of finite-state
machine that encodes the underlying task structure. The algorithm integrates
reward machines in 1) the update of the policy and value functions obtained by
any RL algorithm of choice, and 2) the update of the automated curriculum that
generates context distributions. Our empirical results evidence that the
proposed algorithm achieves optimal behavior reliably even in cases in which
existing baselines cannot make any meaningful progress. It also decreases the
curriculum length and reduces the variance in the curriculum generation process
by up to one-fourth and four orders of magnitude, respectively.
- Abstract(参考訳): 自己ペースト強化学習(RL)は、文脈上の確率分布の列、すなわちキュリキュラを自動生成することにより、学習のデータ効率を向上させることを目的としている。
しかし、既存の自己ペースrlのテクニックは、時間的に拡張された動作を伴う長期計画タスクでは失敗する。
タスク構造に関する事前知識を利用することで、自己ペースRLの有効性を向上させることができると仮定する。
我々は、報酬機械、すなわち基礎となるタスク構造を符号化する有限状態機械に導かれる自己ペースrlアルゴリズムを開発した。
アルゴリズムは報酬機を統合する
1) 選択したRLアルゴリズムによって得られるポリシー及び値関数の更新及び
2) コンテキスト分布を生成する自動カリキュラムの更新。
実験結果から,既存のベースラインが意味のある進歩を達成できない場合でも,提案アルゴリズムが最適動作を確実に達成できることを示す。
また、カリキュラムの長さを削減し、カリキュラム生成プロセスのばらつきをそれぞれ4分の1および4桁まで低減する。
関連論文リスト
- Sample Efficient Reinforcement Learning by Automatically Learning to
Compose Subtasks [3.1594865504808944]
サブタスクを表すラベルのセットを与えられた場合、サンプル効率のために報酬関数を自動的に構成するRLアルゴリズムを提案する。
我々は,様々なスパース・リワード環境におけるアルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2024-01-25T15:06:40Z) - Self-Supervised Curriculum Generation for Autonomous Reinforcement
Learning without Task-Specific Knowledge [25.168236693829783]
現在の強化学習アルゴリズムを現実世界のシナリオに適用する際の大きなボトルネックは、各エピソード間の環境をリセットする必要があることである。
本稿では,タスク固有の知識を使わずにエージェントの学習進捗に適応したカリキュラムを生成する新しいARLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-15T18:40:10Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
オフライン強化学習(RL)パラダイムは、静的な行動データセットを、データを収集したポリシーよりも優れたパフォーマンスのポリシーに変換するためのレシピを提供する。
本稿では,アクション量子化のための適応型スキームを提案する。
IQL,CQL,BRACといった最先端のオフラインRL手法が,提案手法と組み合わせることで,ベンチマークのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2023-10-18T06:07:10Z) - Reinforcement Learning with Success Induced Task Prioritization [68.8204255655161]
本稿では,自動カリキュラム学習のためのフレームワークであるSuccess induced Task Prioritization (SITP)を紹介する。
アルゴリズムはエージェントに最速の学習を提供するタスクの順序を選択する。
我々は,SITPが他のカリキュラム設計手法と一致するか,あるいは上回っていることを実証する。
論文 参考訳(メタデータ) (2022-12-30T12:32:43Z) - KRLS: Improving End-to-End Response Generation in Task Oriented Dialog
with Reinforced Keywords Learning [25.421649004269373]
タスク指向ダイアログ(TOD)では、強化学習アルゴリズムがタスク関連メトリクスの応答を直接最適化するためにモデルを訓練する。
オフライン環境でのTOD性能を改善するために,より効率的なRLベースのアルゴリズムを提案する。
MultiWoZデータセットの実験では、我々の新しいトレーニングアルゴリズムであるKeywords Reinforcement Learning with Next-word Smpling (KRLS)が最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-11-30T06:27:46Z) - A Workflow for Offline Model-Free Robotic Reinforcement Learning [117.07743713715291]
オフライン強化学習(RL)は、オンラインインタラクションを伴わずに、事前の経験のみを活用することによって、学習制御ポリシを可能にする。
本研究では,教師付き学習問題に対して,比較的よく理解されたオフラインRLと類似した実践的ワークフローを開発する。
オンラインチューニングを伴わない効果的なポリシー作成におけるこのワークフローの有効性を実証する。
論文 参考訳(メタデータ) (2021-09-22T16:03:29Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
強化学習(RL)は、任意のタスクメトリクスを報酬としてプラグインすることで、より柔軟なソリューションを提供する。
ソフトQ-ラーニングの観点からテキスト生成のための新しいRL式を導入する。
雑音/負の例から学習し、敵攻撃、即時生成など、幅広いタスクにアプローチを適用する。
論文 参考訳(メタデータ) (2021-06-14T18:48:40Z) - A Minimalist Approach to Offline Reinforcement Learning [10.904148149681932]
オフライン強化学習は、固定されたデータのバッチから学習するタスクを定義する。
本稿では,最小限の変更を行いながら,深いRLアルゴリズムを実現することを目的とする。
オンラインRLアルゴリズムのポリシー更新に振舞いクローン項を追加するだけで、最先端のオフラインRLアルゴリズムの性能にマッチできることがわかった。
論文 参考訳(メタデータ) (2021-06-12T20:38:59Z) - Induction and Exploitation of Subgoal Automata for Reinforcement
Learning [75.55324974788475]
本稿では,Regressed Learning (RL)タスクにおけるサブゴールの学習と活用のためのISAを提案する。
ISAは、タスクのサブゴールによってエッジがラベル付けされたオートマトンであるサブゴールオートマトンを誘導することで強化学習をインターリーブする。
サブゴールオートマトンはまた、タスクの完了を示す状態と、タスクが成功せずに完了したことを示す状態の2つの特別な状態で構成されている。
論文 参考訳(メタデータ) (2020-09-08T16:42:55Z) - Discovering Reinforcement Learning Algorithms [53.72358280495428]
強化学習アルゴリズムは、いくつかのルールの1つに従ってエージェントのパラメータを更新する。
本稿では,更新ルール全体を検出するメタラーニング手法を提案する。
これには、一連の環境と対話することで、"何を予測するか"(例えば、値関数)と"どのように学習するか"の両方が含まれている。
論文 参考訳(メタデータ) (2020-07-17T07:38:39Z) - Self-Paced Deep Reinforcement Learning [42.467323141301826]
カリキュラム強化学習(CRL)は、学習を通して調整された一連のタスクに公開することにより、エージェントの学習速度と安定性を向上させる。
実証的な成功にもかかわらず、CRLのオープンな疑問は、手動設計を避けながら、与えられた強化学習(RL)エージェントのカリキュラムを自動的に生成する方法である。
本稿では,カリキュラム生成を推論問題として解釈し,タスク上の分布を段階的に学習し,対象タスクにアプローチすることで解答を提案する。
このアプローチは、エージェントがペースを制御し、しっかりとした理論的動機を持ち、深いRLアルゴリズムと容易に統合できる自動カリキュラム生成につながる。
論文 参考訳(メタデータ) (2020-04-24T15:48:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。