Graph Neural Convection-Diffusion with Heterophily
- URL: http://arxiv.org/abs/2305.16780v2
- Date: Tue, 30 May 2023 12:25:39 GMT
- Title: Graph Neural Convection-Diffusion with Heterophily
- Authors: Kai Zhao, Qiyu Kang, Yang Song, Rui She, Sijie Wang and Wee Peng Tay
- Abstract summary: Graph neural networks (GNNs) have shown promising results across various graph learning tasks.
But they often assume homophily, which can result in poor performance on heterophilic graphs.
We propose a novel GNN that incorporates the principle of heterophily by modeling the flow of information on nodes.
- Score: 32.234690120340964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have shown promising results across various
graph learning tasks, but they often assume homophily, which can result in poor
performance on heterophilic graphs. The connected nodes are likely to be from
different classes or have dissimilar features on heterophilic graphs. In this
paper, we propose a novel GNN that incorporates the principle of heterophily by
modeling the flow of information on nodes using the convection-diffusion
equation (CDE). This allows the CDE to take into account both the diffusion of
information due to homophily and the ``convection'' of information due to
heterophily. We conduct extensive experiments, which suggest that our framework
can achieve competitive performance on node classification tasks for
heterophilic graphs, compared to the state-of-the-art methods. The code is
available at \url{https://github.com/zknus/Graph-Diffusion-CDE}.
Related papers
- The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs [59.03660013787925]
We introduce the Heterophily Snowflake Hypothesis and provide an effective solution to guide and facilitate research on heterophilic graphs.
Our observations show that our framework acts as a versatile operator for diverse tasks.
It can be integrated into various GNN frameworks, boosting performance in-depth and offering an explainable approach to choosing the optimal network depth.
arXiv Detail & Related papers (2024-06-18T12:16:00Z) - Demystifying Structural Disparity in Graph Neural Networks: Can One Size
Fit All? [61.35457647107439]
Most real-world homophilic and heterophilic graphs are comprised of a mixture of nodes in both homophilic and heterophilic structural patterns.
We provide evidence that Graph Neural Networks(GNNs) on node classification typically perform admirably on homophilic nodes.
We then propose a rigorous, non-i.i.d PAC-Bayesian generalization bound for GNNs, revealing reasons for the performance disparity.
arXiv Detail & Related papers (2023-06-02T07:46:20Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - LSGNN: Towards General Graph Neural Network in Node Classification by
Local Similarity [59.41119013018377]
We propose to use the local similarity (LocalSim) to learn node-level weighted fusion, which can also serve as a plug-and-play module.
For better fusion, we propose a novel and efficient Initial Residual Difference Connection (IRDC) to extract more informative multi-hop information.
Our proposed method, namely Local Similarity Graph Neural Network (LSGNN), can offer comparable or superior state-of-the-art performance on both homophilic and heterophilic graphs.
arXiv Detail & Related papers (2023-05-07T09:06:11Z) - Graph Contrastive Learning under Heterophily via Graph Filters [51.46061703680498]
Graph contrastive learning (CL) methods learn node representations in a self-supervised manner by maximizing the similarity between the augmented node representations obtained via a GNN-based encoder.
In this work, we propose an effective graph CL method, namely HLCL, for learning graph representations under heterophily.
Our extensive experiments show that HLCL outperforms state-of-the-art graph CL methods on benchmark datasets with heterophily, as well as large-scale real-world graphs, by up to 7%, and outperforms graph supervised learning methods on datasets with heterophily by up to 10%.
arXiv Detail & Related papers (2023-03-11T08:32:39Z) - Break the Wall Between Homophily and Heterophily for Graph
Representation Learning [25.445073413243925]
Homophily and heterophily are intrinsic properties of graphs that describe whether two linked nodes share similar properties.
This work identifies three graph features, including the ego node feature, the aggregated node feature, and the graph structure feature, that are essential for graph representation learning.
It proposes a new GNN model called OGNN that extracts all three graph features and adaptively fuses them to achieve generalizability across the whole spectrum of homophily.
arXiv Detail & Related papers (2022-10-08T19:37:03Z) - Descent Steps of a Relation-Aware Energy Produce Heterogeneous Graph
Neural Networks [25.59092732148598]
Heterogeneous graph neural networks (GNNs) achieve strong performance on node classification tasks in a semi-supervised learning setting.
We propose a novel heterogeneous GNN architecture in which layers are derived from optimization steps that descend a novel relation-aware energy function.
arXiv Detail & Related papers (2022-06-22T13:48:08Z) - Incorporating Heterophily into Graph Neural Networks for Graph Classification [6.709862924279403]
Graph Neural Networks (GNNs) often assume strong homophily for graph classification, seldom considering heterophily.
We develop a novel GNN architecture called IHGNN (short for Incorporating Heterophily into Graph Neural Networks)
We empirically validate IHGNN on various graph datasets and demonstrate that it outperforms the state-of-the-art GNNs for graph classification.
arXiv Detail & Related papers (2022-03-15T06:48:35Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both
Homophily and Heterophily [24.742449127169586]
Graph Neural Networks (GNNs) are widely used on a variety of graph-based machine learning tasks.
For node-level tasks, GNNs have strong power to model the homophily property of graphs.
We propose a novel GNN model based on a bi- kernel feature transformation and a selection gate.
arXiv Detail & Related papers (2021-10-29T13:44:09Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.