論文の概要: Error Bounds for Flow Matching Methods
- arxiv url: http://arxiv.org/abs/2305.16860v2
- Date: Sun, 11 Feb 2024 22:44:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-14 00:51:52.852751
- Title: Error Bounds for Flow Matching Methods
- Title(参考訳): フローマッチング法における誤差境界
- Authors: Joe Benton, George Deligiannidis, Arnaud Doucet
- Abstract要約: フローマッチング法は、2つの任意の確率分布間のフローを近似する。
近似誤差に$L2$の値とデータ分布に一定の規則性を仮定し, 完全に決定論的サンプリングを用いたフローマッチング手順の誤差境界を提案する。
- 参考スコア(独自算出の注目度): 38.9898500163582
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Score-based generative models are a popular class of generative modelling
techniques relying on stochastic differential equations (SDE). From their
inception, it was realized that it was also possible to perform generation
using ordinary differential equations (ODE) rather than SDE. This led to the
introduction of the probability flow ODE approach and denoising diffusion
implicit models. Flow matching methods have recently further extended these
ODE-based approaches and approximate a flow between two arbitrary probability
distributions. Previous work derived bounds on the approximation error of
diffusion models under the stochastic sampling regime, given assumptions on the
$L^2$ loss. We present error bounds for the flow matching procedure using fully
deterministic sampling, assuming an $L^2$ bound on the approximation error and
a certain regularity condition on the data distributions.
- Abstract(参考訳): スコアベース生成モデルは確率微分方程式(SDE)に依存する生成モデリング技法の一般的なクラスである。
当初から,SDEではなく,通常の微分方程式(ODE)を用いて生成することも可能であった。
これは確率フロー ode アプローチの導入と拡散暗黙モデルの拡張につながった。
フローマッチング手法は、最近これらのODEベースのアプローチをさらに拡張し、2つの任意の確率分布間のフローを近似した。
確率的サンプリング条件下での拡散モデルの近似誤差に関する以前の研究は、$l^2$損失の仮定から導かれた。
近似誤差に対する$l^2$バインドとデータ分布上の一定の正規性条件を仮定し,完全決定論的サンプリングを用いてフローマッチング手順の誤差境界を示す。
関連論文リスト
- Stochastic Sampling from Deterministic Flow Models [8.849981177332594]
そこで本論文では,フローモデルを同じ境界分布を持つ微分方程式の族(SDE)に変換する手法を提案する。
我々は,おもちゃのガウスセットアップと大規模イメージネット生成タスクにおいて,提案手法の利点を実証的に実証した。
論文 参考訳(メタデータ) (2024-10-03T05:18:28Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - A Sharp Convergence Theory for The Probability Flow ODEs of Diffusion Models [45.60426164657739]
拡散型サンプリング器の非漸近収束理論を開発する。
我々は、$d/varepsilon$がターゲット分布を$varepsilon$トータル偏差距離に近似するのに十分であることを証明した。
我々の結果は、$ell$のスコア推定誤差がデータ生成プロセスの品質にどのように影響するかも特徴付ける。
論文 参考訳(メタデータ) (2024-08-05T09:02:24Z) - Diffusion models for Gaussian distributions: Exact solutions and Wasserstein errors [0.0]
拡散モデルやスコアベースモデルでは画像生成の性能が向上した。
本研究では,データ分布がガウス的である場合の拡散モデルの挙動とその数値的実装について理論的に検討する。
論文 参考訳(メタデータ) (2024-05-23T07:28:56Z) - Diffusion models for probabilistic programming [56.47577824219207]
拡散モデル変分推論(DMVI)は確率型プログラミング言語(PPL)における自動近似推論手法である
DMVIは実装が容易で、例えば正規化フローを用いた変分推論の欠点を伴わずに、PPLでヘイズルフリー推論が可能であり、基礎となるニューラルネットワークモデルに制約を課さない。
論文 参考訳(メタデータ) (2023-11-01T12:17:05Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic
Analysis For DDIM-Type Samplers [90.45898746733397]
本研究では拡散生成モデルに用いる決定論的サンプリング器の非漸近解析のためのフレームワークを開発する。
確率フローODEに沿った1ステップは,1) 条件付き対数線上を無限に先行して上昇する回復ステップ,2) 雑音を現在の勾配に向けて前向きに進行する劣化ステップの2段階で表すことができる。
論文 参考訳(メタデータ) (2023-03-06T18:59:19Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Diffusion Normalizing Flow [4.94950858749529]
本稿では微分方程式(SDE)に基づく拡散正規化フローという新しい生成モデルを提案する。
このアルゴリズムは、2つのニューラルSDEで構成されており、データに徐々にノイズを加えてガウスランダムノイズに変換するフォワードSDEと、データ分布からサンプルへのノイズを徐々に除去する後方SDEである。
提案アルゴリズムは,高次元データ密度推定と画像生成の両タスクにおける競合性能を示す。
論文 参考訳(メタデータ) (2021-10-14T17:41:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。