論文の概要: Stochastic Sampling from Deterministic Flow Models
- arxiv url: http://arxiv.org/abs/2410.02217v1
- Date: Thu, 3 Oct 2024 05:18:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 07:55:57.289578
- Title: Stochastic Sampling from Deterministic Flow Models
- Title(参考訳): 決定論的流れモデルからの確率サンプリング
- Authors: Saurabh Singh, Ian Fischer,
- Abstract要約: そこで本論文では,フローモデルを同じ境界分布を持つ微分方程式の族(SDE)に変換する手法を提案する。
我々は,おもちゃのガウスセットアップと大規模イメージネット生成タスクにおいて,提案手法の利点を実証的に実証した。
- 参考スコア(独自算出の注目度): 8.849981177332594
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deterministic flow models, such as rectified flows, offer a general framework for learning a deterministic transport map between two distributions, realized as the vector field for an ordinary differential equation (ODE). However, they are sensitive to model estimation and discretization errors and do not permit different samples conditioned on an intermediate state, limiting their application. We present a general method to turn the underlying ODE of such flow models into a family of stochastic differential equations (SDEs) that have the same marginal distributions. This method permits us to derive families of \emph{stochastic samplers}, for fixed (e.g., previously trained) \emph{deterministic} flow models, that continuously span the spectrum of deterministic and stochastic sampling, given access to the flow field and the score function. Our method provides additional degrees of freedom that help alleviate the issues with the deterministic samplers and empirically outperforms them. We empirically demonstrate advantages of our method on a toy Gaussian setup and on the large scale ImageNet generation task. Further, our family of stochastic samplers provide an additional knob for controlling the diversity of generation, which we qualitatively demonstrate in our experiments.
- Abstract(参考訳): 整流フローのような決定論的フローモデルは、通常の微分方程式(ODE)のベクトル場として実現された2つの分布間の決定論的トランスポートマップを学習するための一般的なフレームワークを提供する。
しかし、それらはモデル推定と離散化エラーに敏感であり、中間状態で条件付けられた異なるサンプルを許可せず、アプリケーションを制限する。
このような流れモデルの基盤となるODEを、同じ境界分布を持つ確率微分方程式(SDE)の族に変換する一般的な方法を提案する。
この方法では,フロー場とスコア関数へのアクセスを条件として,決定的および確率的サンプリングのスペクトルを連続的に分散する,固定(eg,以前に訓練した)emph{deterministic} フローモデルに対する \emph{stochastic samplers} の族を導出することができる。
提案手法は, 決定論的サンプリング器の問題を緩和し, 実証的に性能を向上する上で, さらなる自由度を提供する。
我々は,おもちゃのガウスセットアップと大規模イメージネット生成タスクにおいて,提案手法の利点を実証的に実証した。
さらに、我々の確率的サンプルの家系は、我々の実験で定性的に示すように、生成の多様性を制御するための追加のノブを提供する。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models [1.949927790632678]
本稿では,ブラウン運動文脈におけるコールホップ変換(Cole-Hopf transform)と呼ばれるログ変換に基づく。
本稿では,HJ-sampler という新しいアルゴリズムを開発し,与えられた終端観測による微分方程式の逆問題に対する推論を行う。
論文 参考訳(メタデータ) (2024-09-15T05:30:54Z) - Weak Generative Sampler to Efficiently Sample Invariant Distribution of Stochastic Differential Equation [8.67581853745823]
現在のディープラーニングに基づく手法は、定常フォッカー-プランク方程式を解き、ディープニューラルネットワークの形で不変確率密度関数を決定する。
本稿では, 弱い生成サンプル(WGS)を用いて, 独立かつ同一に分布したサンプルを直接生成するフレームワークを提案する。
提案した損失関数はFokker-Planck方程式の弱い形式に基づいており、正規化フローを統合して不変分布を特徴づける。
論文 参考訳(メタデータ) (2024-05-29T16:41:42Z) - Diffusion models for probabilistic programming [56.47577824219207]
拡散モデル変分推論(DMVI)は確率型プログラミング言語(PPL)における自動近似推論手法である
DMVIは実装が容易で、例えば正規化フローを用いた変分推論の欠点を伴わずに、PPLでヘイズルフリー推論が可能であり、基礎となるニューラルネットワークモデルに制約を課さない。
論文 参考訳(メタデータ) (2023-11-01T12:17:05Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
ポテンシャル関数が支配する分布からサンプリングする問題を考察する。
本研究は, 決定論的な楽譜に基づくMCMC法を提案し, 粒子に対する決定論的進化をもたらす。
論文 参考訳(メタデータ) (2023-08-28T23:51:33Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Error Bounds for Flow Matching Methods [38.9898500163582]
フローマッチング法は、2つの任意の確率分布間のフローを近似する。
近似誤差に$L2$の値とデータ分布に一定の規則性を仮定し, 完全に決定論的サンプリングを用いたフローマッチング手順の誤差境界を提案する。
論文 参考訳(メタデータ) (2023-05-26T12:13:53Z) - Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic
Analysis For DDIM-Type Samplers [90.45898746733397]
本研究では拡散生成モデルに用いる決定論的サンプリング器の非漸近解析のためのフレームワークを開発する。
確率フローODEに沿った1ステップは,1) 条件付き対数線上を無限に先行して上昇する回復ステップ,2) 雑音を現在の勾配に向けて前向きに進行する劣化ステップの2段階で表すことができる。
論文 参考訳(メタデータ) (2023-03-06T18:59:19Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。