論文の概要: MultiTool-CoT: GPT-3 Can Use Multiple External Tools with Chain of
Thought Prompting
- arxiv url: http://arxiv.org/abs/2305.16896v1
- Date: Fri, 26 May 2023 13:00:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-29 14:53:43.914833
- Title: MultiTool-CoT: GPT-3 Can Use Multiple External Tools with Chain of
Thought Prompting
- Title(参考訳): MultiTool-CoT: GPT-3は思考プロンプトの連鎖で複数の外部ツールを使用できる
- Authors: Tatsuro Inaba, Hirokazu Kiyomaru, Fei Cheng, Sadao Kurohashi
- Abstract要約: 推論過程において,計算機や知識検索などの外部ツールを組み込んだMultiTool-CoTを提案する。
NumGLUEのタスク2データセットにMultiTool-CoTを適用し,数値推論とドメイン固有知識の両方を必要とする。
- 参考スコア(独自算出の注目度): 23.607534241574346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have achieved impressive performance on various
reasoning tasks. To further improve the performance, we propose MultiTool-CoT,
a novel framework that leverages chain-of-thought (CoT) prompting to
incorporate multiple external tools, such as a calculator and a knowledge
retriever, during the reasoning process. We apply MultiTool-CoT to the Task 2
dataset of NumGLUE, which requires both numerical reasoning and domain-specific
knowledge. The experiments show that our method significantly outperforms
strong baselines and achieves state-of-the-art performance.
- Abstract(参考訳): 大規模言語モデル(llm)は様々な推論タスクで印象的なパフォーマンスを達成している。
提案するMultiTool-CoT(MultiTool-CoT)は,思考の連鎖(CoT)を利用して,推論プロセス中に計算機や知識検索などの複数の外部ツールを組み込むことを促す新しいフレームワークである。
NumGLUEのタスク2データセットにMultiTool-CoTを適用し,数値推論とドメイン固有知識の両方を必要とする。
実験の結果,本手法は強いベースラインを著しく上回り,最先端の性能を実現していることがわかった。
関連論文リスト
- Re-Invoke: Tool Invocation Rewriting for Zero-Shot Tool Retrieval [47.81307125613145]
Re-Invokeは、トレーニングなしで大規模ツールセットに効果的にスケールするために設計された教師なしツール検索手法である。
我々は、クエリ毎に最も関連性の高いツールを特定するために、意図に基づいて、新しいマルチビュー類似度ランキング戦略を採用する。
評価の結果、Re-Invokeはシングルツールとマルチツールの両方のシナリオにおいて、最先端の代替よりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-08-03T22:49:27Z) - Enhancing Tool Retrieval with Iterative Feedback from Large Language Models [9.588592185027455]
大規模言語モデル(LLM)は、コンテキスト内学習や微調整を通じて、ある程度のツールを効果的に扱うことができる。
現実のシナリオでは、ツールの数は一般的に広範囲で不規則に更新され、専用のツール検索コンポーネントの必要性を強調している。
本稿では,大規模言語モデルからの反復的なフィードバックでツール検索を強化することを提案する。
論文 参考訳(メタデータ) (2024-06-25T11:12:01Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain(ATC)は、大規模言語モデル(LLM)がマルチツールユーザとして機能することを可能にするフレームワークである。
次に,ツールの範囲を拡大するために,ブラックボックス探索法を提案する。
包括的な評価のために、ToolFlowという挑戦的なベンチマークを構築しました。
論文 参考訳(メタデータ) (2024-05-26T11:40:58Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
現実世界のシステムは多種多様なツールを組み込んでおり、全てのツールを大規模言語モデルに入力することは不可能である。
既存のツール検索手法は主にユーザクエリとツール記述間のセマンティックマッチングに焦点を当てている。
我々は,ユーザクエリとツール記述のセマンティックな類似性だけでなく,ツールの協調的情報も考慮した,新しいモデル診断型協調学習型ツール検索手法であるCOLTを提案する。
論文 参考訳(メタデータ) (2024-05-25T06:41:23Z) - What Are Tools Anyway? A Survey from the Language Model Perspective [67.18843218893416]
言語モデル(LM)は強力だが、主にテキスト生成タスクに向いている。
LMが使用する外部プログラムとしてツールを統一的に定義する。
各種ツールの効率を実証的に検討した。
論文 参考訳(メタデータ) (2024-03-18T17:20:07Z) - CRAFT: Customizing LLMs by Creating and Retrieving from Specialized
Toolsets [75.64181719386497]
大規模言語モデル(LLM)のためのツール作成・検索フレームワークであるCRAFTを提案する。
タスク用に特別にキュレートされたツールセットを作成し、複雑なタスクを解決する能力を高めるためにこれらのセットからツールを取得するコンポーネントをLLMに装備する。
本手法はフレキシブルに設計されており,既製のLCMを細かな調整なしに未確認領域やモダリティに適応するためのプラグアンドプレイ方式を提供する。
論文 参考訳(メタデータ) (2023-09-29T17:40:26Z) - CREATOR: Tool Creation for Disentangling Abstract and Concrete Reasoning of Large Language Models [74.22729793816451]
大規模言語モデル(LLM)はツールの利用において大きな進歩を遂げているが、その能力はAPIの可用性によって制限されている。
我々は、LCMがドキュメンテーションとコード実現を使って独自のツールを作成できる新しいフレームワークCREATORを提案する。
我々は,MATH と TabMWP のベンチマークで CREATOR を評価する。
論文 参考訳(メタデータ) (2023-05-23T17:51:52Z) - ART: Automatic multi-step reasoning and tool-use for large language
models [105.57550426609396]
大規模言語モデル(LLM)は、数秒とゼロショットの設定で複雑な推論を行うことができる。
各推論ステップは、コアLLM機能を超えて計算をサポートする外部ツールに依存することができる。
プログラムとして中間推論ステップを自動生成するために凍結LDMを使用するフレームワークであるART(Automatic Reasoning and Tool-use)を導入する。
論文 参考訳(メタデータ) (2023-03-16T01:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。