Sharp Bounds for Generalized Causal Sensitivity Analysis
- URL: http://arxiv.org/abs/2305.16988v2
- Date: Mon, 16 Oct 2023 15:22:03 GMT
- Title: Sharp Bounds for Generalized Causal Sensitivity Analysis
- Authors: Dennis Frauen, Valentyn Melnychuk, Stefan Feuerriegel
- Abstract summary: We propose a unified framework for causal sensitivity analysis under unobserved confounding.
This includes (conditional) average treatment effects, effects for mediation analysis and path analysis, and distributional effects.
Our bounds for (conditional) average treatment effects coincide with recent optimality results for causal sensitivity analysis.
- Score: 30.77874108094485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal inference from observational data is crucial for many disciplines such
as medicine and economics. However, sharp bounds for causal effects under
relaxations of the unconfoundedness assumption (causal sensitivity analysis)
are subject to ongoing research. So far, works with sharp bounds are restricted
to fairly simple settings (e.g., a single binary treatment). In this paper, we
propose a unified framework for causal sensitivity analysis under unobserved
confounding in various settings. For this, we propose a flexible generalization
of the marginal sensitivity model (MSM) and then derive sharp bounds for a
large class of causal effects. This includes (conditional) average treatment
effects, effects for mediation analysis and path analysis, and distributional
effects. Furthermore, our sensitivity model is applicable to discrete,
continuous, and time-varying treatments. It allows us to interpret the partial
identification problem under unobserved confounding as a distribution shift in
the latent confounders while evaluating the causal effect of interest. In the
special case of a single binary treatment, our bounds for (conditional) average
treatment effects coincide with recent optimality results for causal
sensitivity analysis. Finally, we propose a scalable algorithm to estimate our
sharp bounds from observational data.
Related papers
- On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - A Neural Framework for Generalized Causal Sensitivity Analysis [78.71545648682705]
We propose NeuralCSA, a neural framework for causal sensitivity analysis.
We provide theoretical guarantees that NeuralCSA is able to infer valid bounds on the causal query of interest.
arXiv Detail & Related papers (2023-11-27T17:40:02Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Interpretable Deep Causal Learning for Moderation Effects [0.0]
We address the problem of interpretability and targeted regularization in causal machine learning models.
We propose a novel deep counterfactual learning architecture for estimating individual treatment effects.
arXiv Detail & Related papers (2022-06-21T11:21:09Z) - Partial Identification of Dose Responses with Hidden Confounders [25.468473751289036]
Inferring causal effects of continuous-valued treatments from observational data is a crucial task.
We present novel methodology to bound both average and conditional average continuous-valued treatment-effect estimates.
We apply our method to a real-world observational case study to demonstrate the value of identifying dose-dependent causal effects.
arXiv Detail & Related papers (2022-04-24T07:02:21Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Deconfounded Score Method: Scoring DAGs with Dense Unobserved
Confounding [101.35070661471124]
We show that unobserved confounding leaves a characteristic footprint in the observed data distribution that allows for disentangling spurious and causal effects.
We propose an adjusted score-based causal discovery algorithm that may be implemented with general-purpose solvers and scales to high-dimensional problems.
arXiv Detail & Related papers (2021-03-28T11:07:59Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Causal Mediation Analysis with Hidden Confounders [24.246450472404614]
Causal mediation analysis (CMA) is a formal statistical approach for identifying and estimating causal effects.
This work aims to circumvent the stringent assumption by following a causal graph with a unified confounder and its proxy variables.
Our core contribution is an algorithm that combines deep latent-variable models and proxy strategy to jointly infer a unified surrogate confounder and estimate different causal effects in CMA from observed variables.
arXiv Detail & Related papers (2021-02-21T06:46:11Z) - Split-Treatment Analysis to Rank Heterogeneous Causal Effects for
Prospective Interventions [15.443178111068418]
We propose a split-treatment analysis that ranks the individuals most likely to be positively affected by a prospective intervention.
We show that the ranking of heterogeneous causal effect based on the proxy treatment is the same as the ranking based on the target treatment's effect.
arXiv Detail & Related papers (2020-11-11T16:17:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.