Disentangled Graph Autoencoder for Treatment Effect Estimation
- URL: http://arxiv.org/abs/2412.14497v2
- Date: Thu, 20 Feb 2025 11:43:15 GMT
- Title: Disentangled Graph Autoencoder for Treatment Effect Estimation
- Authors: Di Fan, Renlei Jiang, Yunhao Wen, Chuanhou Gao,
- Abstract summary: We propose a novel disentangled variational graph autoencoder for treatment effect estimation on networked observational data.
Our graph encoder disentangles latent factors into instrumental, confounding, adjustment, and noisy factors, while enforcing factor independence using the Hilbert-Schmidt Independence Criterion.
- Score: 1.361700725822891
- License:
- Abstract: Treatment effect estimation from observational data has attracted significant attention across various research fields. However, many widely used methods rely on the unconfoundedness assumption, which is often unrealistic due to the inability to observe all confounders, thereby overlooking the influence of latent confounders. To address this limitation, recent approaches have utilized auxiliary network information to infer latent confounders, relaxing this assumption. However, these methods often treat observed variables and networks as proxies only for latent confounders, which can result in inaccuracies when certain variables influence treatment without affecting outcomes, or vice versa. This conflation of distinct latent factors undermines the precision of treatment effect estimation. To overcome this challenge, we propose a novel disentangled variational graph autoencoder for treatment effect estimation on networked observational data. Our graph encoder disentangles latent factors into instrumental, confounding, adjustment, and noisy factors, while enforcing factor independence using the Hilbert-Schmidt Independence Criterion. Extensive experiments on multiple networked datasets demonstrate that our method outperforms state-of-the-art approaches.
Related papers
- Higher-Order Causal Message Passing for Experimentation with Complex Interference [6.092214762701847]
We introduce a new class of estimators based on causal message-passing, specifically designed for settings with pervasive, unknown interference.
Our estimator draws on information from the sample mean and variance of unit outcomes and treatments over time, enabling efficient use of observed data.
arXiv Detail & Related papers (2024-11-01T18:00:51Z) - Estimating Individual Dose-Response Curves under Unobserved Confounders from Observational Data [6.166869525631879]
We present ContiVAE, a novel framework for estimating causal effects of continuous treatments, measured by individual dose-response curves.
We show that ContiVAE outperforms existing methods by up to 62%, demonstrating its robustness and flexibility.
arXiv Detail & Related papers (2024-10-21T07:24:26Z) - Estimating Treatment Effects in Continuous Time with Hidden Confounders [8.292249583600809]
Estimating treatment effects in the longitudinal setting in the presence of hidden confounders remains an extremely challenging problem.
Recent advancements in neural differential equations to build a latent factor model using a controlled differential equation and Lipschitz constrained convolutional operation.
Experiments on both synthetic and real-world datasets highlight the promise of continuous time methods for estimating treatment effects in the presence of hidden confounders.
arXiv Detail & Related papers (2023-02-19T00:28:20Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Partial Identification of Dose Responses with Hidden Confounders [25.468473751289036]
Inferring causal effects of continuous-valued treatments from observational data is a crucial task.
We present novel methodology to bound both average and conditional average continuous-valued treatment-effect estimates.
We apply our method to a real-world observational case study to demonstrate the value of identifying dose-dependent causal effects.
arXiv Detail & Related papers (2022-04-24T07:02:21Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
We propose a novel Emotion Recognition Network (IERN) to alleviate the negative effects brought by the dataset bias.
A series of designed tests validate the effectiveness of IERN, and experiments on three emotion benchmarks demonstrate that IERN outperforms other state-of-the-art approaches.
arXiv Detail & Related papers (2021-07-26T10:40:59Z) - Deconfounded Score Method: Scoring DAGs with Dense Unobserved
Confounding [101.35070661471124]
We show that unobserved confounding leaves a characteristic footprint in the observed data distribution that allows for disentangling spurious and causal effects.
We propose an adjusted score-based causal discovery algorithm that may be implemented with general-purpose solvers and scales to high-dimensional problems.
arXiv Detail & Related papers (2021-03-28T11:07:59Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.