LLMForecaster: Improving Seasonal Event Forecasts with Unstructured Textual Data
- URL: http://arxiv.org/abs/2412.02525v1
- Date: Tue, 03 Dec 2024 16:18:42 GMT
- Title: LLMForecaster: Improving Seasonal Event Forecasts with Unstructured Textual Data
- Authors: Hanyu Zhang, Chuck Arvin, Dmitry Efimov, Michael W. Mahoney, Dominique Perrault-Joncas, Shankar Ramasubramanian, Andrew Gordon Wilson, Malcolm Wolff,
- Abstract summary: This paper introduces a novel forecast post-processor that fine-tunes large language models to incorporate unstructured semantic and contextual information and historical data.
In an industry-scale retail application, we demonstrate that our technique yields statistically significantly forecast improvements across several sets of products subject to holiday-driven demand surges.
- Score: 63.777637042161544
- License:
- Abstract: Modern time-series forecasting models often fail to make full use of rich unstructured information about the time series themselves. This lack of proper conditioning can lead to obvious model failures; for example, models may be unaware of the details of a particular product, and hence fail to anticipate seasonal surges in customer demand in the lead up to major exogenous events like holidays for clearly relevant products. To address this shortcoming, this paper introduces a novel forecast post-processor -- which we call LLMForecaster -- that fine-tunes large language models (LLMs) to incorporate unstructured semantic and contextual information and historical data to improve the forecasts from an existing demand forecasting pipeline. In an industry-scale retail application, we demonstrate that our technique yields statistically significantly forecast improvements across several sets of products subject to holiday-driven demand surges.
Related papers
- F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Stock Volume Forecasting with Advanced Information by Conditional Variational Auto-Encoder [49.97673761305336]
We demonstrate the use of Conditional Variational (CVAE) to improve the forecasts of daily stock volume time series in both short and long term forecasting tasks.
CVAE generates non-linear time series as out-of-sample forecasts, which have better accuracy and closer fit of correlation to the actual data.
arXiv Detail & Related papers (2024-06-19T13:13:06Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
We present Lag-Llama, a general-purpose foundation model for time series forecasting based on a decoder-only transformer architecture.
Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities.
When fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-12T12:29:32Z) - Counterfactual Explanations for Time Series Forecasting [14.03870816983583]
We formulate the novel problem of counterfactual generation for time series forecasting, and propose an algorithm, called ForecastCF.
ForecastCF solves the problem by applying gradient-based perturbations to the original time series.
Our results show that ForecastCF outperforms the baseline in terms of counterfactual validity and data manifold closeness.
arXiv Detail & Related papers (2023-10-12T08:51:59Z) - Improved Sales Forecasting using Trend and Seasonality Decomposition
with LightGBM [9.788039182463768]
We propose a new measure to indicate the unique impacts of the trend and seasonality components on a time series.
Our experiments show that the proposed strategy can achieve improved accuracy.
arXiv Detail & Related papers (2023-05-26T18:49:42Z) - Deep Learning based Forecasting: a case study from the online fashion
industry [7.694480564850072]
We describe the data and our modelling approach for this forecasting problem in detail and present empirical results.
In this case study, we describe the data and our modelling approach for this forecasting problem in detail and present empirical results.
arXiv Detail & Related papers (2023-05-23T13:30:35Z) - Multimodal Neural Network For Demand Forecasting [0.8602553195689513]
We propose a multi-modal sales forecasting network that combines real-life events from news articles with traditional data such as historical sales and holiday information.
We show statistically significant improvements in the SMAPE error metric with an average improvement of 7.37% against the existing state-of-the-art sales forecasting techniques.
arXiv Detail & Related papers (2022-10-20T18:06:36Z) - A Comparative Study on Forecasting of Retail Sales [0.0]
We benchmark forecasting models on historical sales data from Walmart to predict their future sales.
We apply these models on the forecasting challenge dataset (M5 forecasting by Kaggle)
arXiv Detail & Related papers (2022-03-14T04:24:29Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.