Functional Flow Matching
- URL: http://arxiv.org/abs/2305.17209v2
- Date: Tue, 5 Dec 2023 19:53:12 GMT
- Title: Functional Flow Matching
- Authors: Gavin Kerrigan, Giosue Migliorini, Padhraic Smyth
- Abstract summary: We propose a function-space generative model that generalizes the recently-introduced Flow Matching model.
Our method does not rely on likelihoods or simulations, making it well-suited to the function space setting.
We demonstrate through experiments on several real-world benchmarks that our proposed FFM method outperforms several recently proposed function-space generative models.
- Score: 14.583771853250008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose Functional Flow Matching (FFM), a function-space generative model
that generalizes the recently-introduced Flow Matching model to operate in
infinite-dimensional spaces. Our approach works by first defining a path of
probability measures that interpolates between a fixed Gaussian measure and the
data distribution, followed by learning a vector field on the underlying space
of functions that generates this path of measures. Our method does not rely on
likelihoods or simulations, making it well-suited to the function space
setting. We provide both a theoretical framework for building such models and
an empirical evaluation of our techniques. We demonstrate through experiments
on several real-world benchmarks that our proposed FFM method outperforms
several recently proposed function-space generative models.
Related papers
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
In this paper, we aim to help address such challenges by developing an textitinfluence functions framework.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - Simulation-based inference using surjective sequential neural likelihood
estimation [50.24983453990065]
Surjective Sequential Neural Likelihood estimation is a novel method for simulation-based inference.
By embedding the data in a low-dimensional space, SSNL solves several issues previous likelihood-based methods had when applied to high-dimensional data sets.
arXiv Detail & Related papers (2023-08-02T10:02:38Z) - Continuous-Time Functional Diffusion Processes [24.31376730733132]
We introduce Functional Diffusion Processes (FDPs), which generalize score-based diffusion models to infinite-dimensional function spaces.
FDPs require a new framework to describe the forward and backward dynamics, and several extensions to derive practical training objectives.
arXiv Detail & Related papers (2023-03-01T20:00:50Z) - Diffusion Generative Models in Infinite Dimensions [10.15736468214228]
We generalize diffusion generative models to operate directly in function space.
A significant benefit of our function space point of view is that it allows us to explicitly specify the space of functions we are working in.
Our approach allows us to perform both unconditional and conditional generation of function-valued data.
arXiv Detail & Related papers (2022-12-01T21:54:19Z) - Active Nearest Neighbor Regression Through Delaunay Refinement [79.93030583257597]
We introduce an algorithm for active function approximation based on nearest neighbor regression.
Our Active Nearest Neighbor Regressor (ANNR) relies on the Voronoi-Delaunay framework from computational geometry to subdivide the space into cells with constant estimated function value.
arXiv Detail & Related papers (2022-06-16T10:24:03Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
We introduce a new approach to reconstruction of the thermodynamic functions and phase boundaries in two-parametric statistical mechanics systems.
We use the proposed approach to accurately reconstruct the partition functions and phase diagrams of the Ising model and the exactly solvable non-equilibrium TASEP.
arXiv Detail & Related papers (2022-05-18T17:11:23Z) - Functional Mixtures-of-Experts [0.24578723416255746]
We consider the statistical analysis of heterogeneous data for prediction in situations where the observations include functions.
We first present a new family of ME models, named functional ME (FME) in which the predictors are potentially noisy observations.
We develop dedicated expectation--maximization algorithms for Lasso-like (EM-Lasso) regularized maximum-likelihood parameter estimation strategies to fit the models.
arXiv Detail & Related papers (2022-02-04T17:32:28Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - High-dimensional Functional Graphical Model Structure Learning via
Neighborhood Selection Approach [15.334392442475115]
We propose a neighborhood selection approach to estimate the structure of functional graphical models.
We thus circumvent the need for a well-defined precision operator that may not exist when the functions are infinite dimensional.
arXiv Detail & Related papers (2021-05-06T07:38:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.