論文の概要: Optimization's Neglected Normative Commitments
- arxiv url: http://arxiv.org/abs/2305.17465v1
- Date: Sat, 27 May 2023 12:43:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-30 19:05:46.189119
- Title: Optimization's Neglected Normative Commitments
- Title(参考訳): 最適化の無視規範
- Authors: Benjamin Laufer, Thomas Krendl Gilbert, Helen Nissenbaum
- Abstract要約: 潜在的に高い意思決定にアプローチするために使用されるパラダイムは、現実世界を決定(s)、目的(s)、制約(s)の集合に抽象化することに依存している。
本稿では,最適化に必須の規範的選択と仮定について述べる。
その後、無視される可能性のある6つの緊急問題を特定する。
- 参考スコア(独自算出の注目度): 3.3388234549922027
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimization is offered as an objective approach to resolving complex,
real-world decisions involving uncertainty and conflicting interests. It drives
business strategies as well as public policies and, increasingly, lies at the
heart of sophisticated machine learning systems. A paradigm used to approach
potentially high-stakes decisions, optimization relies on abstracting the real
world to a set of decision(s), objective(s) and constraint(s). Drawing from the
modeling process and a range of actual cases, this paper describes the
normative choices and assumptions that are necessarily part of using
optimization. It then identifies six emergent problems that may be neglected:
1) Misspecified values can yield optimizations that omit certain imperatives
altogether or incorporate them incorrectly as a constraint or as part of the
objective, 2) Problematic decision boundaries can lead to faulty modularity
assumptions and feedback loops, 3) Failing to account for multiple agents'
divergent goals and decisions can lead to policies that serve only certain
narrow interests, 4) Mislabeling and mismeasurement can introduce bias and
imprecision, 5) Faulty use of relaxation and approximation methods,
unaccompanied by formal characterizations and guarantees, can severely impede
applicability, and 6) Treating optimization as a justification for action,
without specifying the necessary contextual information, can lead to ethically
dubious or faulty decisions. Suggestions are given to further understand and
curb the harms that can arise when optimization is used wrongfully.
- Abstract(参考訳): 最適化は、不確実性と矛盾する利益を含む複雑な現実世界の意思決定を解決する客観的アプローチとして提供される。
ビジネス戦略と公共政策を駆動し、ますます高度な機械学習システムの中心となっている。
潜在的に高い意思決定にアプローチするために使用されるパラダイムは、現実世界を決定(s)、目的(s)、制約(s)の集合に抽象化することに依存する。
本稿では,モデリングプロセスと実例の範囲から,最適化に必然的に含まれる規範的選択と仮定について述べる。
そして、無視される可能性のある6つの問題を特定します。
1) ミス特定値は、特定の命令を完全に省略する最適化や、それらを制約として又は目的の一部として誤って組み込むことができる。
2) 問題的決定境界は,モジュール性の仮定やフィードバックループの欠陥につながる可能性がある。
3)複数のエージェントの異なる目標や決定を説明できないことは、特定の狭い利益のみを果たす政策につながる可能性がある。
4)誤記及び誤記は、偏見及び不当さをもたらすことがある。
5) 形式的特徴及び保証を伴わない緩和及び近似法の誤用は、適用性を著しく阻害し得る。
6) 行動の正当化として最適化を扱い、必要な文脈情報を規定することなく、倫理的に疑わしい、または不当な判断を下すことができる。
最適化が不正に使用される際に生じる害をさらに理解し、抑制するために提案される。
関連論文リスト
- Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
オンライン報酬指標の偏りのないオフライン推定を最適化する意思決定ポリシーを学習することを目指している。
学習シナリオにおける同値性に基づく単一のフレームワークを提案する。
我々のフレームワークは、分散最適非バイアス推定器の特徴付けを可能にし、それに対する閉形式解を提供する。
論文 参考訳(メタデータ) (2024-05-09T12:52:22Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then-フレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
このアプローチは非効率であり、最適化ステップを通じてバックプロパゲーションのための手作りの、問題固有のルールを必要とする。
本稿では,予測モデルを用いて観測可能な特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2023-11-22T01:32:06Z) - On solving decision and risk management problems subject to uncertainty [91.3755431537592]
不確実性は意思決定とリスク管理において広範囲にわたる課題である。
本稿では,このような戦略を体系的に理解し,その適用範囲を判断し,それらをうまく活用するための枠組みを開発する。
論文 参考訳(メタデータ) (2023-01-18T19:16:23Z) - A Framework for Inherently Interpretable Optimization Models [0.0]
何十年も前に難解だった大規模な問題の解決は、今や日常的な課題である。
1つの大きな障壁は、最適化ソフトウェアがブラックボックスとして認識できることである。
本稿では、本質的に理解しやすい説明規則を持つ解を導出する最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-26T10:32:00Z) - An Approach to Ordering Objectives and Pareto Efficient Solutions [0.0]
多目的最適化問題の解法は一般に比較や順序付けはできない。
意思決定者はしばしば、スケールした目的を比較することができると信じている。
確率積分変換を用いて問題の目的を全て同じ範囲のスコアにマッピングする手法を提案する。
論文 参考訳(メタデータ) (2022-05-30T17:55:53Z) - Off-Policy Evaluation with Policy-Dependent Optimization Response [90.28758112893054]
我々は,テキスト政治に依存した線形最適化応答を用いた非政治評価のための新しいフレームワークを開発した。
摂動法による政策依存推定のための非バイアス推定器を構築する。
因果介入を最適化するための一般的なアルゴリズムを提供する。
論文 参考訳(メタデータ) (2022-02-25T20:25:37Z) - Bayesian Persuasion for Algorithmic Recourse [28.586165301962485]
いくつかの状況では、根底にある予測モデルはゲームを避け、競争上の優位性を維持するために意図的に秘密にされている。
我々はベイズ的説得のゲームのような設定を捉え、意思決定者は、例えばアクションレコメンデーションのようなシグナルを、望ましい行動を取るためのインセンティブを与える決定対象に送信する。
本稿では,最適化問題として最適なベイズ的インセンティブ互換(BIC)行動推薦ポリシーを見出すという意思決定者の問題を定式化し,線形プログラムを用いて解を特徴づける。
論文 参考訳(メタデータ) (2021-12-12T17:18:54Z) - Goal Seeking Quadratic Unconstrained Binary Optimization [0.5439020425819]
本稿では,目標からのずれを最小限に抑える2種類の目標探索QUBOを提案する。
本論文では、タブー探索に基づく1フリップによる目標からの偏差を最小限に抑える2種類の目標探索QUBOについて述べる。
論文 参考訳(メタデータ) (2021-03-24T03:03:13Z) - Inverse Active Sensing: Modeling and Understanding Timely
Decision-Making [111.07204912245841]
我々は,内因性,文脈依存型時間圧下でのエビデンスに基づく意思決定の一般的な設定のための枠組みを開発する。
意思決定戦略において、サプライズ、サスペンス、最適性の直感的な概念をモデル化する方法を実証する。
論文 参考訳(メタデータ) (2020-06-25T02:30:45Z) - Decisions, Counterfactual Explanations and Strategic Behavior [16.980621769406923]
戦略的な設定で実用性の観点から最適な政策と対実的な説明を見つける。
事前に定義されたポリシーを考えると、最適の対実的説明の集合を見つける問題はNPハードであることが示される。
本研究では,マトロイド制約を問題定式化に組み込むことで,最適対実的説明セットの多様性を高めることができることを示した。
論文 参考訳(メタデータ) (2020-02-11T12:04:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。