Towards Autonomous and Safe Last-mile Deliveries with AI-augmented
Self-driving Delivery Robots
- URL: http://arxiv.org/abs/2305.17705v1
- Date: Sun, 28 May 2023 12:25:40 GMT
- Title: Towards Autonomous and Safe Last-mile Deliveries with AI-augmented
Self-driving Delivery Robots
- Authors: Eyad Shaklab, Areg Karapetyan, Arjun Sharma, Murad Mebrahtu, Mustofa
Basri, Mohamed Nagy, Majid Khonji, and Jorge Dias
- Abstract summary: Last-mile delivery (LMD) is notorious for being the most time-consuming and costly stage of the shipping process.
This paper introduces a customer-centric and safety-conscious LMD system for small urban communities based on AI-assisted autonomous delivery robots.
- Score: 4.671260337086703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In addition to its crucial impact on customer satisfaction, last-mile
delivery (LMD) is notorious for being the most time-consuming and costly stage
of the shipping process. Pressing environmental concerns combined with the
recent surge of e-commerce sales have sparked renewed interest in automation
and electrification of last-mile logistics. To address the hurdles faced by
existing robotic couriers, this paper introduces a customer-centric and
safety-conscious LMD system for small urban communities based on AI-assisted
autonomous delivery robots. The presented framework enables end-to-end
automation and optimization of the logistic process while catering for
real-world imposed operational uncertainties, clients' preferred time
schedules, and safety of pedestrians. To this end, the integrated optimization
component is modeled as a robust variant of the Cumulative Capacitated Vehicle
Routing Problem with Time Windows, where routes are constructed under uncertain
travel times with an objective to minimize the total latency of deliveries
(i.e., the overall waiting time of customers, which can negatively affect their
satisfaction). We demonstrate the proposed LMD system's utility through
real-world trials in a university campus with a single robotic courier.
Implementation aspects as well as the findings and practical insights gained
from the deployment are discussed in detail. Lastly, we round up the
contributions with numerical simulations to investigate the scalability of the
developed mathematical formulation with respect to the number of robotic
vehicles and customers.
Related papers
- Creating a Gen-AI based Track and Trace Assistant MVP (SuperTracy) for PostNL [0.0]
PostNL, the biggest parcel and E-commerce corporation of the Netherlands wants to use generative AI to enhance the communication around track and trace of parcels.
During the internship a Minimal Viable Product (MVP) is created to showcase the value of using generative AI technologies.
MVP successfully implemented a multi-agent open-source LLM system, called SuperTracy.
arXiv Detail & Related papers (2024-09-04T13:49:19Z) - Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfillment at workstations.
We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation.
In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches.
arXiv Detail & Related papers (2024-08-29T20:22:22Z) - Multi-Agent Path Finding with Real Robot Dynamics and Interdependent Tasks for Automated Warehouses [1.2810395420131764]
Multi-Agent Path Finding (MAPF) is an important optimization problem underlying the deployment of robots in automated warehouses and factories.
We consider a realistic problem of online order delivery in a warehouse, where a fleet of robots bring the products belonging to each order from shelves to workstations.
This creates a stream of inter-dependent pickup and delivery tasks and the associated MAPF problem consists of computing realistic collision-free robot trajectories.
arXiv Detail & Related papers (2024-08-26T15:13:38Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - Individually Rational Collaborative Vehicle Routing through
Give-And-Take Exchanges [4.266376725904727]
We introduce a novel multi-agent approach to this problem, focusing on the Collaborative Vehicle Routing Problem (CVRP) through the lens of individual rationality.
By facilitating cooperation among competing logistics agents through a Give-and-Take approach, we show that it is possible to reduce travel distance and increase operational efficiency system-wide.
arXiv Detail & Related papers (2023-08-31T07:18:37Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
We introduce OmniForce, a human-centered AutoML system that yields both human-assisted ML and ML-assisted human techniques.
We show how OmniForce can put an AutoML system into practice and build adaptive AI in open-environment scenarios.
arXiv Detail & Related papers (2023-03-01T13:35:22Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - Distributed Reinforcement Learning for Robot Teams: A Review [10.92709534981466]
Recent advances in sensing, actuation, and computation have opened the door to multi-robot systems.
Community has leveraged model-free multi-agent reinforcement learning to devise efficient, scalable controllers for multi-robot systems.
Recent findings: Decentralized MRS face fundamental challenges, such as non-stationarity and partial observability.
arXiv Detail & Related papers (2022-04-07T15:34:19Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
A fully-autonomous aerial robot for high-speed object grasping has been proposed.
As an additional sub-task, our system is able to autonomously pierce balloons located in poles close to the surface.
Our approach has been validated in a challenging international competition and has shown outstanding results.
arXiv Detail & Related papers (2021-12-10T11:49:51Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Symbiotic System Design for Safe and Resilient Autonomous Robotics in
Offshore Wind Farms [3.5409202655473724]
Barriers to Beyond Visual Line of Sight (BVLOS) robotics include operational safety compliance and resilience.
We propose a symbiotic system; reflecting the lifecycle learning and co-evolution with knowledge sharing for mutual gain of robotic platforms and remote human operators.
Our methodology enables the run-time verification of safety, reliability and resilience during autonomous missions.
arXiv Detail & Related papers (2021-01-23T11:58:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.