Creating a Gen-AI based Track and Trace Assistant MVP (SuperTracy) for PostNL
- URL: http://arxiv.org/abs/2409.02711v1
- Date: Wed, 4 Sep 2024 13:49:19 GMT
- Title: Creating a Gen-AI based Track and Trace Assistant MVP (SuperTracy) for PostNL
- Authors: Mohammad Reshadati,
- Abstract summary: PostNL, the biggest parcel and E-commerce corporation of the Netherlands wants to use generative AI to enhance the communication around track and trace of parcels.
During the internship a Minimal Viable Product (MVP) is created to showcase the value of using generative AI technologies.
MVP successfully implemented a multi-agent open-source LLM system, called SuperTracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The developments in the field of generative AI has brought a lot of opportunities for companies, for instance to improve efficiency in customer service and automating tasks. PostNL, the biggest parcel and E-commerce corporation of the Netherlands wants to use generative AI to enhance the communication around track and trace of parcels. During the internship a Minimal Viable Product (MVP) is created to showcase the value of using generative AI technologies, to enhance parcel tracking, analyzing the parcel's journey and being able to communicate about it in an easy to understand manner. The primary goal was to develop an in-house LLM-based system, reducing dependency on external platforms and establishing the feasibility of a dedicated generative AI team within the company. This multi-agent LLM based system aimed to construct parcel journey stories and identify logistical disruptions with heightened efficiency and accuracy. The research involved deploying a sophisticated AI-driven communication system, employing Retrieval-Augmented Generation (RAG) for enhanced response precision, and optimizing large language models (LLMs) tailored to domain specific tasks. The MVP successfully implemented a multi-agent open-source LLM system, called SuperTracy. SuperTracy is capable of autonomously managing a broad spectrum of user inquiries and improving internal knowledge handling. Results and evaluation demonstrated technological innovation and feasibility, notably in communication about the track and trace of a parcel, which exceeded initial expectations. These advancements highlight the potential of AI-driven solutions in logistics, suggesting many opportunities for further refinement and broader implementation within PostNL operational framework.
Related papers
- Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.
This approach entails the strategic use of well-crafted prompts to infuse human experience and knowledge into these sophisticated LLMs.
This integration represents the future paradigm of artificial intelligence (AI) as a service and AI for more ease.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning [74.58666091522198]
We present a framework for intuitive robot programming by non-experts.
We leverage natural language prompts and contextual information from the Robot Operating System (ROS)
Our system integrates large language models (LLMs), enabling non-experts to articulate task requirements to the system through a chat interface.
arXiv Detail & Related papers (2024-06-28T08:28:38Z) - Generative AI Systems: A Systems-based Perspective on Generative AI [12.400966570867322]
Large Language Models (LLMs) have revolutionized AI systems by enabling communication with machines using natural language.
Recent developments in Generative AI (GenAI) have shown great promise in using LLMs as multimodal systems.
This paper aims to explore and state new research directions in Generative AI Systems.
arXiv Detail & Related papers (2024-06-25T12:51:47Z) - Large Language Models for UAVs: Current State and Pathways to the Future [6.85423435360359]
Unmanned Aerial Vehicles (UAVs) have emerged as a transformative technology across diverse sectors.
This work explores the significant potential of integrating UAVs and Large Language Models (LLMs) to propel the development of autonomous systems.
arXiv Detail & Related papers (2024-05-02T21:30:10Z) - LEGENT: Open Platform for Embodied Agents [60.71847900126832]
We introduce LEGENT, an open, scalable platform for developing embodied agents using Large Language Models (LLMs) and Large Multimodal Models (LMMs)
LEGENT offers a rich, interactive 3D environment with communicable and actionable agents, paired with a user-friendly interface.
In experiments, an embryonic vision-language-action model trained on LEGENT-generated data surpasses GPT-4V in embodied tasks.
arXiv Detail & Related papers (2024-04-28T16:50:12Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - DIALIGHT: Lightweight Multilingual Development and Evaluation of
Task-Oriented Dialogue Systems with Large Language Models [76.79929883963275]
DIALIGHT is a toolkit for developing and evaluating multilingual Task-Oriented Dialogue (ToD) systems.
It features a secure, user-friendly web interface for fine-grained human evaluation at both local utterance level and global dialogue level.
Our evaluations reveal that while PLM fine-tuning leads to higher accuracy and coherence, LLM-based systems excel in producing diverse and likeable responses.
arXiv Detail & Related papers (2024-01-04T11:27:48Z) - Open-TI: Open Traffic Intelligence with Augmented Language Model [23.22301632003752]
Open-TI is an innovative model targeting the goal of Turing Indistinguishable Traffic Intelligence.
It is the first method capable of conducting exhaustive traffic analysis from scratch.
Open-TI is able to conduct task-specific embodiment like training and adapting the traffic signal control policies.
arXiv Detail & Related papers (2023-12-30T11:50:11Z) - GPT4AIGChip: Towards Next-Generation AI Accelerator Design Automation
via Large Language Models [32.58951432235751]
GPT4AIGChip is a framework intended to democratize AI accelerator design by leveraging human natural languages.
This work is the first to demonstrate an effective pipeline for LLM-powered automated AI accelerator generation.
arXiv Detail & Related papers (2023-09-19T16:14:57Z) - NExT-GPT: Any-to-Any Multimodal LLM [75.5656492989924]
We present an end-to-end general-purpose any-to-any MM-LLM system, NExT-GPT.
We connect an LLM with multimodal adaptors and different diffusion decoders, enabling NExT-GPT to perceive inputs and generate outputs in arbitrary combinations of text, images, videos, and audio.
We introduce a modality-switching instruction tuning (MosIT) and manually curate a high-quality dataset for MosIT, based on which NExT-GPT is empowered with complex cross-modal semantic understanding and content generation.
arXiv Detail & Related papers (2023-09-11T15:02:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.