論文の概要: Image Hash Minimization for Tamper Detection
- arxiv url: http://arxiv.org/abs/2305.17748v1
- Date: Sun, 28 May 2023 15:04:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-30 16:58:11.683975
- Title: Image Hash Minimization for Tamper Detection
- Title(参考訳): タンパー検出のための画像ハッシュ最小化
- Authors: Subhajit Maity, Ram Kumar Karsh
- Abstract要約: 画像ハッシュを用いたタンパー検出は現代の非常に一般的な問題である。
既存の手法のほとんどは、改ざん面積が低い場合に改ざん検出の精度を欠いている。
本研究では,低改質領域の性能を向上しつつ,ハッシュ長を客観的に最小化する手法を提案する。
- 参考スコア(独自算出の注目度): 1.7767466724342065
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Tamper detection using image hash is a very common problem of modern days.
Several research and advancements have already been done to address this
problem. However, most of the existing methods lack the accuracy of tamper
detection when the tampered area is low, as well as requiring long image
hashes. In this paper, we propose a novel method objectively to minimize the
hash length while enhancing the performance at low tampered area.
- Abstract(参考訳): 画像ハッシュを用いたタンパー検出は現代の非常に一般的な問題である。
この問題に対処するためのいくつかの研究と進歩がすでに行われている。
しかし,既存の手法の多くは,改ざん面積が低い場合には改ざん検出の精度が低く,画像ハッシュも長い。
本論文では,低改質領域の性能を向上しつつ,ハッシュ長を客観的に最小化する手法を提案する。
関連論文リスト
- Image Copy-Move Forgery Detection and Localization Scheme: How to Avoid Missed Detection and False Alarm [10.135979083516174]
画像コピー-ムーブ(英: Image copy-move)は、画像の一部が同じ画像の別の部分に置き換えられる操作であり、違法な目的に使用できる。
近年の研究では、キーポイントに基づくアルゴリズムは、優れた、ロバストなローカライゼーション性能を達成している。
しかし、入力画像が低解像度である場合、既存のキーポイントベースのアルゴリズムのほとんどは、十分なキーポイントを生成するのが困難である。
論文 参考訳(メタデータ) (2024-06-05T13:50:29Z) - A Lower Bound of Hash Codes' Performance [122.88252443695492]
本稿では,ハッシュ符号間のクラス間の差分性とクラス内圧縮性が,ハッシュ符号の性能の低い境界を決定することを証明する。
次に、ハッシュコードの後部を推定し、それを制御することにより、上記の目的を完全に活用する代理モデルを提案し、低バイアス最適化を実現する。
一連のハッシュモデルをテストすることで、平均精度が最大で26.5%、精度が最大で20.5%向上した。
論文 参考訳(メタデータ) (2022-10-12T03:30:56Z) - Detecting and Localizing Copy-Move and Image-Splicing Forgery [0.0]
本稿では、ディープラーニングと画像変換の両方を用いて、画像が改ざんされているかどうかを検出する方法に焦点を当てる。
次に、画像の改ざん領域を特定し、対応するマスクを予測する。
結果に基づいて、偽造を検知し識別するより堅牢なフレームワークを実現するための提案とアプローチが提供される。
論文 参考訳(メタデータ) (2022-02-08T01:14:30Z) - Self-Distilled Hashing for Deep Image Retrieval [25.645550298697938]
ハッシュベースの画像検索システムでは、元の入力から変換された入力は通常、異なるコードを生成する。
本稿では,拡張データの可能性を活用しつつ,相違を最小限に抑えるために,自己蒸留ハッシュ方式を提案する。
また、ハッシュプロキシに基づく類似性学習や、バイナリクロスエントロピーに基づく量子化損失を導入し、高品質なハッシュコードを提供する。
論文 参考訳(メタデータ) (2021-12-16T12:01:50Z) - Content-Based Detection of Temporal Metadata Manipulation [91.34308819261905]
画像の撮像時間とその内容と地理的位置とが一致しているかどうかを検証するためのエンドツーエンドのアプローチを提案する。
中心となる考え方は、画像の内容、キャプチャ時間、地理的位置が一致する確率を予測するための教師付き一貫性検証の利用である。
我々のアプローチは、大規模なベンチマークデータセットの以前の作業により改善され、分類精度が59.03%から81.07%に向上した。
論文 参考訳(メタデータ) (2021-03-08T13:16:19Z) - Deep Momentum Uncertainty Hashing [65.27971340060687]
我々は,新しいDeep Momentum Uncertainity Hashing (DMUH)を提案する。
トレーニング中の不確実性を明示的に推定し、不確実性情報を利用して近似過程を導出する。
提案手法は,すべてのデータセット上で最高の性能を達成し,既存の最先端手法を大きなマージンで超越する。
論文 参考訳(メタデータ) (2020-09-17T01:57:45Z) - Deep Reinforcement Learning with Label Embedding Reward for Supervised
Image Hashing [85.84690941656528]
深層型ハッシュのための新しい意思決定手法を提案する。
我々はBose-Chaudhuri-Hocquenghem符号で定義された新しいラベル埋め込み報酬を用いて、深いQ-ネットワークを学ぶ。
我々の手法は、様々なコード長で最先端の教師付きハッシュ法より優れています。
論文 参考訳(メタデータ) (2020-08-10T09:17:20Z) - Reinforcing Short-Length Hashing [61.75883795807109]
既存の手法は、非常に短いハッシュコードを用いた検索性能が劣っている。
本研究では, 短寿命ハッシュ(RSLH)を改良する新しい手法を提案する。
本稿では,ハッシュ表現とセマンティックラベルの相互再構成を行い,セマンティック情報を保存する。
3つの大規模画像ベンチマークの実験は、様々な短いハッシュシナリオ下でのRSLHの優れた性能を示す。
論文 参考訳(メタデータ) (2020-04-24T02:23:52Z) - Targeted Attack for Deep Hashing based Retrieval [57.582221494035856]
本研究では, ディープ・ハッシュ・ターゲット・アタック (DHTA) と呼ばれる新たな手法を提案し, 対象とする攻撃を探索する。
まず、対象の攻撃を点対セットの最適化として定式化し、敵のサンプルのハッシュコードと対象のラベルを持つ対象の集合の平均距離を最小化する。
性能と知覚性のバランスをとるために,摂動に対する$ellinfty$制限の下で,逆例のハッシュコードとアンカーコードとのハミング距離を最小化することを提案する。
論文 参考訳(メタデータ) (2020-04-15T08:36:58Z) - Image Hashing by Minimizing Discrete Component-wise Wasserstein Distance [12.968141477410597]
競合するオートエンコーダは、バランスよく高品質なハッシュコードを生成する堅牢で局所性を保存するハッシュ関数を暗黙的に学習できることが示されている。
既存の逆ハッシュ法は、大規模な画像検索に非効率である。
本稿では,サンプル要求と計算コストを大幅に低減した,新しい対向型オートエンコーダハッシュ手法を提案する。
論文 参考訳(メタデータ) (2020-02-29T00:22:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。