On Entanglement Measures: Discrete Phase Space and Inverter-Chain Link
Viewpoint
- URL: http://arxiv.org/abs/2305.17806v1
- Date: Sun, 28 May 2023 19:54:02 GMT
- Title: On Entanglement Measures: Discrete Phase Space and Inverter-Chain Link
Viewpoint
- Authors: Felix A. Buot
- Abstract summary: This paper serves as a pedagogical treatment of this complex subject of entanglement measures.
A diagrammatic analysis of the entanglement of formation for any multi-partite qubit system is given.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In contrast to abstract statistical analyses in the literature, we present a
concrete physical diagrammatic model of entanglement characterization and
measure with its underlying discrete phase-space physics. This paper serves as
a pedagogical treatment of this complex subject of entanglement measures. We
review the important inherent concurrence property of entangled qubits, as well
as underscore its emergent qubit behavior. From the discrete phase space point
of view, concurrence translates to translation symmetry of entangled binary
systems in some quantitative measure of entanglement. Although the focus is on
bipartite system, the notion is readily extendable to multi-partite system of
qubits, as can easily be deduced from the physical inverter-chain link model. A
diagrammatic analysis of the entanglement of formation for any multi-partite
qubit system is given
Related papers
- Long-range multipartite entanglement near measurement-induced transitions [0.0]
We investigate the multipartite entanglement structure that emerges in quantum circuits involving unitaries and measurements.
We show how a balance between measurements and unitary evolution can lead to multipartite entanglement spreading to distances far greater than what is found in non-monitored systems.
arXiv Detail & Related papers (2024-04-24T18:00:01Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Localization, fractality, and ergodicity in a monitored qubit [0.5892638927736115]
We study the statistical properties of a single two-level system (qubit) subject to repetitive ancilla-based measurements.
This setup is a fundamental minimal model for exploring the interplay between the unitary dynamics of the system and the nonunitaryity introduced by quantum measurements.
arXiv Detail & Related papers (2023-10-03T12:10:30Z) - Interactions and integrability in weakly monitored Hamiltonian systems [0.0]
Interspersing unitary dynamics with local measurements results in measurement-induced phases and transitions in quantum systems.
Two types of transitions have been observed, characterized by an abrupt change in the system size scaling of entanglement entropy.
We identify the key ingredients responsible for the entanglement scaling in the weakly monitored phase.
arXiv Detail & Related papers (2023-08-17T18:00:11Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Quantum information spreading in random spin chains with topological
order [0.0]
Tripartite mutual information (TMI) based on operator-based entanglement entropy (EE) is an efficient tool for measuring them.
We study random spin chains that exhibit phase transitions accompanying non-trivial change in topological properties.
Quench dynamics of the EE and TMI display interesting behaviors providing essential perspective concerning encoding of quantum information.
arXiv Detail & Related papers (2022-05-06T04:26:52Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.