Interactions and integrability in weakly monitored Hamiltonian systems
- URL: http://arxiv.org/abs/2308.09133v1
- Date: Thu, 17 Aug 2023 18:00:11 GMT
- Title: Interactions and integrability in weakly monitored Hamiltonian systems
- Authors: Bo Xing, Xhek Turkeshi, Marco Schir\'o, Rosario Fazio, Dario Poletti
- Abstract summary: Interspersing unitary dynamics with local measurements results in measurement-induced phases and transitions in quantum systems.
Two types of transitions have been observed, characterized by an abrupt change in the system size scaling of entanglement entropy.
We identify the key ingredients responsible for the entanglement scaling in the weakly monitored phase.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interspersing unitary dynamics with local measurements results in
measurement-induced phases and transitions in many-body quantum systems. When
the evolution is driven by a local Hamiltonian, two types of transitions have
been observed, characterized by an abrupt change in the system size scaling of
entanglement entropy. The critical point separates the strongly monitored
area-law phase from a volume law or a sub-extensive, typically logarithmic-like
one at low measurement rates. Identifying the key ingredients responsible for
the entanglement scaling in the weakly monitored phase is the key purpose of
this work. For this purpose, we consider prototypical one-dimensional spin
chains with local monitoring featuring the presence/absence of U(1) symmetry,
integrability, and interactions. Using exact numerical methods, the system
sizes studied reveal that the presence of interaction is always correlated to a
volume-law weakly monitored phase. In contrast, non-interacting systems present
sub-extensive scaling of entanglement. Other characteristics, namely
integrability or U(1) symmetry, do not play a role in the character of the
entanglement phase.
Related papers
- Entanglement and operator correlation signatures of many-body quantum Zeno phases in inefficiently monitored noisy systems [49.1574468325115]
The interplay between information-scrambling Hamiltonians and local continuous measurements hosts platforms for exotic measurement-induced phase transition.
We identify a non-monotonic dependence on the local noise strength in both the averaged entanglement and operator correlations.
The analysis of scaling with the system size in a finite length chain indicates that, at finite efficiency, this effect leads to distinct MiPTs for operator correlations and entanglement.
arXiv Detail & Related papers (2024-07-16T13:42:38Z) - Localization, fractality, and ergodicity in a monitored qubit [0.5892638927736115]
We study the statistical properties of a single two-level system (qubit) subject to repetitive ancilla-based measurements.
This setup is a fundamental minimal model for exploring the interplay between the unitary dynamics of the system and the nonunitaryity introduced by quantum measurements.
arXiv Detail & Related papers (2023-10-03T12:10:30Z) - Entanglement phase transition due to reciprocity breaking without
measurement or post-selection [59.63862802533879]
EPT occurs for a system undergoing purely unitary evolution.
We analytically derive the entanglement entropy out of and at the critical point for the $l=1$ and $l/N ll 1$ case.
arXiv Detail & Related papers (2023-08-28T14:28:59Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Monitored Open Fermion Dynamics: Exploring the Interplay of Measurement,
Decoherence, and Free Hamiltonian Evolution [0.0]
We investigate the impact of dephasing and the inevitable evolution into a non-Gaussian, mixed state, on the dynamics of monitored fermions.
For weak dephasing, constant monitoring preserves a weakly mixed state, which displays a robust measurement-induced phase transition.
We interpret this as a signature of gapless, classical diffusion, which is stabilized by the balanced interplay of Hamiltonian dynamics, measurements, and decoherence.
arXiv Detail & Related papers (2022-02-28T19:00:13Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Symmetry-resolved dynamical purification in synthetic quantum matter [1.2189422792863447]
We show that symmetry-resolved information spreading is inhibited due to the competition of coherent and incoherent dynamics.
Our work shows that symmetry plays a key role as a magnifying glass to characterize many-body dynamics in open quantum systems.
arXiv Detail & Related papers (2021-01-19T19:01:09Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.