論文の概要: Large Language Models, scientific knowledge and factuality: A framework to streamline human expert evaluation
- arxiv url: http://arxiv.org/abs/2305.17819v3
- Date: Fri, 18 Oct 2024 12:49:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:23:25.726345
- Title: Large Language Models, scientific knowledge and factuality: A framework to streamline human expert evaluation
- Title(参考訳): 大規模言語モデル, 科学的知識, 事実性: 人間の専門家評価を合理化するための枠組み
- Authors: Magdalena Wysocka, Oskar Wysocki, Maxime Delmas, Vincent Mutel, Andre Freitas,
- Abstract要約: 本研究は,生物医学的背景知識と対話するための大規模言語モデルの可能性を探るものである。
フレームワークには3つの評価ステップが含まれており、それぞれが流布、即応的なアライメント、セマンティック・コヒーレンス、事実的知識、生成した応答の特異性という3つの側面を逐次評価する。
この研究は、ChatGPT、GPT-4、Llama 2を含む11の最先端のLLMを2つのプロンプトベースタスクで持つ能力に関する体系的な評価を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The paper introduces a framework for the evaluation of the encoding of factual scientific knowledge, designed to streamline the manual evaluation process typically conducted by domain experts. Inferring over and extracting information from Large Language Models (LLMs) trained on a large corpus of scientific literature can potentially define a step change in biomedical discovery, reducing the barriers for accessing and integrating existing medical evidence. This work explores the potential of LLMs for dialoguing with biomedical background knowledge, using the context of antibiotic discovery. The framework involves of three evaluation steps, each assessing different aspects sequentially: fluency, prompt alignment, semantic coherence, factual knowledge, and specificity of the generated responses. By splitting these tasks between non-experts and experts, the framework reduces the effort required from the latter. The work provides a systematic assessment on the ability of eleven state-of-the-art models LLMs, including ChatGPT, GPT-4 and Llama 2, in two prompting-based tasks: chemical compound definition generation and chemical compound-fungus relation determination. Although recent models have improved in fluency, factual accuracy is still low and models are biased towards over-represented entities. The ability of LLMs to serve as biomedical knowledge bases is questioned, and the need for additional systematic evaluation frameworks is highlighted. While LLMs are currently not fit for purpose to be used as biomedical factual knowledge bases in a zero-shot setting, there is a promising emerging property in the direction of factuality as the models become domain specialised, scale-up in size and level of human feedback.
- Abstract(参考訳): 本稿では,ドメインの専門家が通常行う手動評価プロセスの合理化を目的とした,事実科学的知識の符号化評価のための枠組みを提案する。
学術文献の大規模なコーパスで訓練されたLarge Language Models (LLM) から情報を推測して抽出することは、生物医学的な発見の段階的変化を定義できる可能性があり、既存の医学的証拠にアクセスし統合するための障壁を減らすことができる。
本研究は, 生物医学的背景知識と対話する LLM の可能性について, 抗生物質発見の文脈を用いて検討する。
フレームワークには3つの評価ステップが含まれており、それぞれが流布、即応的なアライメント、セマンティック・コヒーレンス、事実的知識、生成した応答の特異性という3つの側面を逐次評価する。
これらのタスクを非専門家と専門家に分割することで、フレームワークは後者から必要な労力を削減する。
この研究は、ChatGPT、GPT-4、Llama 2を含む11種類の最先端モデルのLCMを、化学化合物定義生成と化学化合物-ファングス関係決定の2つのプロンプトベースのタスクで、系統的に評価する。
最近のモデルでは流速が改善されているが、実際の精度はまだ低く、モデルは過剰表現されたエンティティに偏っている。
LLMが生物医学的知識基盤として機能する能力は疑問視され、新たな体系的評価フレームワークの必要性が強調される。
LLMは、現在、ゼロショット設定でバイオメディカルな事実知識ベースとして使われるには適していないが、モデルがドメイン特化され、サイズと人間のフィードバックのレベルが上がるにつれて、事実性の方向に有望な新興性が存在する。
関連論文リスト
- Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - Diagnostic Reasoning in Natural Language: Computational Model and Application [68.47402386668846]
言語基底タスク(NL-DAR)の文脈における診断誘導推論(DAR)について検討する。
パール構造因果モデルに基づくNL-DARの新しいモデリングフレームワークを提案する。
得られたデータセットを用いて,NL-DARにおける人間の意思決定過程を解析する。
論文 参考訳(メタデータ) (2024-09-09T06:55:37Z) - LLMs are not Zero-Shot Reasoners for Biomedical Information Extraction [13.965777046473885]
大規模言語モデル(LLM)は、医療分野のアプリケーションにますます採用されている。
LLMがバイオメディカル領域で伝統的に追求されるタスクでどの程度うまく機能するかは不明である。
論文 参考訳(メタデータ) (2024-08-22T09:37:40Z) - Large Language Models as Biomedical Hypothesis Generators: A Comprehensive Evaluation [15.495976478018264]
大規模言語モデル(LLM)は、知識相互作用に革命をもたらす有望なツールとして登場した。
バイオメディカル文献から背景と仮説のペアのデータセットを構築し、トレーニング、観察、および見えないテストセットに分割する。
最上位モデルの仮説生成能力を、ゼロショット、少数ショット、微調整設定で評価する。
論文 参考訳(メタデータ) (2024-07-12T02:55:13Z) - M-QALM: A Benchmark to Assess Clinical Reading Comprehension and Knowledge Recall in Large Language Models via Question Answering [14.198330378235632]
我々は,3つのジェネラリストと3つの専門的なバイオメディカルサブドメインにおいて,22のデータセットに関する大規模な実験研究を行うために,複数選択と抽象質問応答を用いた。
15個のLLMの性能の多面的解析により、リコールや理解の向上につながる命令チューニングなどの成功要因が明らかになった。
最近提案されたドメイン適応モデルには十分な知識が欠如している可能性があるが、収集した医療知識データセットを直接微調整することは、奨励的な結果を示している。
我々は、必要な知識を単に思い出し、提示された知識と統合するモデルの能力の間に大きなギャップがあることを明らかにする、スキル指向手動エラー解析で定量的結果を補完する。
論文 参考訳(メタデータ) (2024-06-06T02:43:21Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
我々は、軽量なアダプターモジュールを用いて、構造化された生体医学的知識を事前訓練された言語モデルに注入するアプローチを開発した。
バイオメディカル知識システムUMLSと新しいバイオケミカルOntoChemの2つの大きなKGと、PubMedBERTとBioLinkBERTの2つの著名なバイオメディカルPLMを使用している。
計算能力の要件を低く保ちながら,本手法がいくつかの事例において性能改善につながることを示す。
論文 参考訳(メタデータ) (2023-12-21T14:26:57Z) - Customizing Large Language Models for Business Context: Framework and Experiments [4.922554372855655]
大規模言語モデル (LLM) は情報システムにおけるデザイン科学の新しい時代を支えてきた。
我々は,LLMを一般的なビジネスコンテキストにカスタマイズするための新しいフレームワークを提案し,テストする。
医療相談の文脈で提案した枠組みをインスタンス化する。
論文 参考訳(メタデータ) (2023-12-15T21:42:19Z) - Exploring the Cognitive Knowledge Structure of Large Language Models: An
Educational Diagnostic Assessment Approach [50.125704610228254]
大規模言語モデル(LLM)は、様々なタスクにまたがる例外的なパフォーマンスを示すだけでなく、知性の火花も示している。
近年の研究では、人間の試験における能力の評価に焦点が当てられ、異なる領域における彼らの印象的な能力を明らかにしている。
ブルーム分類に基づく人体検査データセットであるMoocRadarを用いて評価を行った。
論文 参考訳(メタデータ) (2023-10-12T09:55:45Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Scientific Language Models for Biomedical Knowledge Base Completion: An
Empirical Study [62.376800537374024]
我々は,KG の完成に向けた科学的 LM の研究を行い,生物医学的リンク予測を強化するために,その潜在知識を活用できるかどうかを探る。
LMモデルとKG埋め込みモデルを統合し,各入力例をいずれかのモデルに割り当てることを学ぶルータ法を用いて,性能を大幅に向上させる。
論文 参考訳(メタデータ) (2021-06-17T17:55:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。