Sequential Condition Evolved Interaction Knowledge Graph for Traditional
Chinese Medicine Recommendation
- URL: http://arxiv.org/abs/2305.17866v1
- Date: Mon, 29 May 2023 03:13:39 GMT
- Title: Sequential Condition Evolved Interaction Knowledge Graph for Traditional
Chinese Medicine Recommendation
- Authors: Jingjin Liu, Hankz Hankui Zhuo, Kebing Jin, Jiamin Yuan, Zhimin Yang,
Zhengan Yao
- Abstract summary: Traditional Chinese Medicine (TCM) has a rich history of utilizing natural herbs to treat a diversity of illnesses.
Existing TCM recommendation approaches overlook the changes in patient status and only explore potential patterns between symptoms and prescriptions.
We propose a novel framework that treats the model as a sequential prescription-making problem by considering the dynamics of the patient's condition.
- Score: 9.953064118341812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional Chinese Medicine (TCM) has a rich history of utilizing natural
herbs to treat a diversity of illnesses. In practice, TCM diagnosis and
treatment are highly personalized and organically holistic, requiring
comprehensive consideration of the patient's state and symptoms over time.
However, existing TCM recommendation approaches overlook the changes in patient
status and only explore potential patterns between symptoms and prescriptions.
In this paper, we propose a novel Sequential Condition Evolved Interaction
Knowledge Graph (SCEIKG), a framework that treats the model as a sequential
prescription-making problem by considering the dynamics of the patient's
condition across multiple visits. In addition, we incorporate an interaction
knowledge graph to enhance the accuracy of recommendations by considering the
interactions between different herbs and the patient's condition. Experimental
results on a real-world dataset demonstrate that our approach outperforms
existing TCM recommendation methods, achieving state-of-the-art performance.
Related papers
- Contrastive Learning on Medical Intents for Sequential Prescription Recommendation [7.780844394603662]
Attentive Recommendation with Contrasted Intents (ARCI) is designed to capture the different but coexisting temporal paths across a shared sequence of visits.
We conducted experiments on two real-world datasets for the prescription recommendation task using both ranking and classification metrics.
arXiv Detail & Related papers (2024-08-13T20:10:28Z) - CausalMed: Causality-Based Personalized Medication Recommendation Centered on Patient health state [11.137353555292277]
CausalMed is a patient health state-centric model capable of enhancing the personalization of patient representations.
Our method learns more personalized patient representation and outperforms state-of-the-art models in accuracy and safety.
arXiv Detail & Related papers (2024-04-18T14:44:08Z) - Leave No Patient Behind: Enhancing Medication Recommendation for Rare Disease Patients [47.68396964741116]
We propose a novel model called Robust and Accurate REcommendations for Medication (RAREMed) to enhance accuracy for rare diseases.
It employs a transformer encoder with a unified input sequence approach to capture complex relationships among disease and procedure codes.
It provides accurate drug sets for both rare and common disease patients, thereby mitigating unfairness in medication recommendation systems.
arXiv Detail & Related papers (2024-03-26T14:36:22Z) - Conditional Generation Net for Medication Recommendation [73.09366442098339]
Medication recommendation targets to provide a proper set of medicines according to patients' diagnoses, which is a critical task in clinics.
We propose Conditional Generation Net (COGNet) which introduces a novel copy-or-predict mechanism to generate the set of medicines.
We validate the proposed model on the public MIMIC data set, and the experimental results show that the proposed model can outperform state-of-the-art approaches.
arXiv Detail & Related papers (2022-02-14T10:16:41Z) - Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue
Generation [150.52617238140868]
We propose low-resource medical dialogue generation to transfer the diagnostic experience from source diseases to target ones.
We also develop a Graph-Evolving Meta-Learning framework that learns to evolve the commonsense graph for reasoning disease-symptom correlations in a new disease.
arXiv Detail & Related papers (2020-12-22T13:20:23Z) - Learning-based Computer-aided Prescription Model for Parkinson's
Disease: A Data-driven Perspective [61.70045118068213]
We build a dataset by collecting symptoms of PD patients, and their prescription drug provided by neurologists.
Then, we build a novel computer-aided prescription model by learning the relation between observed symptoms and prescription drug.
For the new coming patients, we could recommend (predict) suitable prescription drug on their observed symptoms by our prescription model.
arXiv Detail & Related papers (2020-07-31T14:34:35Z) - Syndrome-aware Herb Recommendation with Multi-Graph Convolution Network [49.85331664178196]
Herb recommendation plays a crucial role in the therapeutic process of Traditional Chinese Medicine.
We propose a new method that takes the implicit syndrome induction process into account for herb recommendation.
arXiv Detail & Related papers (2020-02-20T05:56:53Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
We introduce the Counterfactual Recurrent Network (CRN) to estimate treatment effects over time.
CRN uses domain adversarial training to build balancing representations of the patient history.
We show how our model achieves lower error in estimating counterfactuals and in choosing the correct treatment and timing of treatment.
arXiv Detail & Related papers (2020-02-10T20:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.