Contrastive Learning on Medical Intents for Sequential Prescription Recommendation
- URL: http://arxiv.org/abs/2408.10259v1
- Date: Tue, 13 Aug 2024 20:10:28 GMT
- Title: Contrastive Learning on Medical Intents for Sequential Prescription Recommendation
- Authors: Arya Hadizadeh Moghaddam, Mohsen Nayebi Kerdabadi, Mei Liu, Zijun Yao,
- Abstract summary: Attentive Recommendation with Contrasted Intents (ARCI) is designed to capture the different but coexisting temporal paths across a shared sequence of visits.
We conducted experiments on two real-world datasets for the prescription recommendation task using both ranking and classification metrics.
- Score: 7.780844394603662
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in sequential modeling applied to Electronic Health Records (EHR) have greatly influenced prescription recommender systems. While the recent literature on drug recommendation has shown promising performance, the study of discovering a diversity of coexisting temporal relationships at the level of medical codes over consecutive visits remains less explored. The goal of this study can be motivated from two perspectives. First, there is a need to develop a sophisticated sequential model capable of disentangling the complex relationships across sequential visits. Second, it is crucial to establish multiple and diverse health profiles for the same patient to ensure a comprehensive consideration of different medical intents in drug recommendation. To achieve this goal, we introduce Attentive Recommendation with Contrasted Intents (ARCI), a multi-level transformer-based method designed to capture the different but coexisting temporal paths across a shared sequence of visits. Specifically, we propose a novel intent-aware method with contrastive learning, that links specialized medical intents of the patients to the transformer heads for extracting distinct temporal paths associated with different health profiles. We conducted experiments on two real-world datasets for the prescription recommendation task using both ranking and classification metrics. Our results demonstrate that ARCI has outperformed the state-of-the-art prescription recommendation methods and is capable of providing interpretable insights for healthcare practitioners.
Related papers
- Leave No Patient Behind: Enhancing Medication Recommendation for Rare Disease Patients [47.68396964741116]
We propose a novel model called Robust and Accurate REcommendations for Medication (RAREMed) to enhance accuracy for rare diseases.
It employs a transformer encoder with a unified input sequence approach to capture complex relationships among disease and procedure codes.
It provides accurate drug sets for both rare and common disease patients, thereby mitigating unfairness in medication recommendation systems.
arXiv Detail & Related papers (2024-03-26T14:36:22Z) - Knowledge-Induced Medicine Prescribing Network for Medication Recommendation [9.591674293850557]
This study proposes a novel Knowledge-Induced Medicine Prescribing Network (KindMed) to recommend medicines.
We leverage hierarchical sequence learning to discover and fuse temporal dynamics of clinical (i.e., diagnosis and procedures) and medicine streams across patients' historical admissions to foster personalized recommendations.
We validated the effectiveness of our KindMed on the augmented real-world EHR cohorts, achieving improved recommendation performances against a handful of graph-driven baselines.
arXiv Detail & Related papers (2023-10-23T04:15:39Z) - Framework based on complex networks to model and mine patient pathways [0.6749750044497732]
The so-called "pathway of patients" is a new field of research that supports clinical and organisational decisions.
We propose a framework comprising: (i) a pathway model based on a multi-aspect graph, (ii) a novel dissimilarity measurement to compare pathways taking the elapsed time into account, and (iii) a mining method based on traditional centrality measures to discover the most relevant steps of the pathways.
arXiv Detail & Related papers (2023-09-25T15:11:52Z) - SHAPE: A Sample-adaptive Hierarchical Prediction Network for Medication
Recommendation [22.899946140205962]
We propose a novel Sample-adaptive Hierarchical medicAtion Prediction nEtwork, termed SHAPE, to tackle the challenges in the medication recommendation task.
Specifically, we design a compact intra-visit set encoder to encode the relationship in the medical event for obtaining visit-level representation.
To endow the model with the capability of modeling the variable visit length, we introduce a soft curriculum learning method to assign the difficulty of each sample automatically by the visit length.
arXiv Detail & Related papers (2023-09-09T08:28:04Z) - Conditional Generation Net for Medication Recommendation [73.09366442098339]
Medication recommendation targets to provide a proper set of medicines according to patients' diagnoses, which is a critical task in clinics.
We propose Conditional Generation Net (COGNet) which introduces a novel copy-or-predict mechanism to generate the set of medicines.
We validate the proposed model on the public MIMIC data set, and the experimental results show that the proposed model can outperform state-of-the-art approaches.
arXiv Detail & Related papers (2022-02-14T10:16:41Z) - Learn2Reg: comprehensive multi-task medical image registration
challenge, dataset and evaluation in the era of deep learning [19.267693026491482]
Learn2Reg covers a wide range of anatomies: brain, abdomen and thorax, modalities: ultrasound, CT, MRI, populations: intra- and inter-patient and levels of supervision.
Our complementary set of metrics, including robustness, accuracy, plausibility and speed enables unique insight into the current-state-of-the-art of medical image registration.
arXiv Detail & Related papers (2021-12-08T09:46:39Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - Semi-Supervised Variational Reasoning for Medical Dialogue Generation [70.838542865384]
Two key characteristics are relevant for medical dialogue generation: patient states and physician actions.
We propose an end-to-end variational reasoning approach to medical dialogue generation.
A physician policy network composed of an action-classifier and two reasoning detectors is proposed for augmented reasoning ability.
arXiv Detail & Related papers (2021-05-13T04:14:35Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Learning-based Computer-aided Prescription Model for Parkinson's
Disease: A Data-driven Perspective [61.70045118068213]
We build a dataset by collecting symptoms of PD patients, and their prescription drug provided by neurologists.
Then, we build a novel computer-aided prescription model by learning the relation between observed symptoms and prescription drug.
For the new coming patients, we could recommend (predict) suitable prescription drug on their observed symptoms by our prescription model.
arXiv Detail & Related papers (2020-07-31T14:34:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.