ReSup: Reliable Label Noise Suppression for Facial Expression
Recognition
- URL: http://arxiv.org/abs/2305.17895v1
- Date: Mon, 29 May 2023 06:02:06 GMT
- Title: ReSup: Reliable Label Noise Suppression for Facial Expression
Recognition
- Authors: Xiang Zhang, Yan Lu, Huan Yan, Jingyang Huang, Yusheng Ji and Yu Gu
- Abstract summary: We propose a more reliable noise-label suppression method called ReSup.
To achieve optimal distribution modeling, ReSup models the similarity distribution of all samples.
To further enhance the reliability of our noise decision results, ReSup uses two networks to jointly achieve noise suppression.
- Score: 20.74719263734951
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Because of the ambiguous and subjective property of the facial expression
recognition (FER) task, the label noise is widely existing in the FER dataset.
For this problem, in the training phase, current FER methods often directly
predict whether the label of the input image is noised or not, aiming to reduce
the contribution of the noised data in training. However, we argue that this
kind of method suffers from the low reliability of such noise data decision
operation. It makes that some mistakenly abounded clean data are not utilized
sufficiently and some mistakenly kept noised data disturbing the model learning
process. In this paper, we propose a more reliable noise-label suppression
method called ReSup (Reliable label noise Suppression for FER). First, instead
of directly predicting noised or not, ReSup makes the noise data decision by
modeling the distribution of noise and clean labels simultaneously according to
the disagreement between the prediction and the target. Specifically, to
achieve optimal distribution modeling, ReSup models the similarity distribution
of all samples. To further enhance the reliability of our noise decision
results, ReSup uses two networks to jointly achieve noise suppression.
Specifically, ReSup utilize the property that two networks are less likely to
make the same mistakes, making two networks swap decisions and tending to trust
decisions with high agreement. Extensive experiments on three popular
benchmarks show that the proposed method significantly outperforms
state-of-the-art noisy label FER methods by 3.01% on FERPlus becnmarks. Code:
https://github.com/purpleleaves007/FERDenoise
Related papers
- Confidence-based Reliable Learning under Dual Noises [46.45663546457154]
Deep neural networks (DNNs) have achieved remarkable success in a variety of computer vision tasks.
Yet, the data collected from the open world are unavoidably polluted by noise, which may significantly undermine the efficacy of the learned models.
Various attempts have been made to reliably train DNNs under data noise, but they separately account for either the noise existing in the labels or that existing in the images.
This work provides a first, unified framework for reliable learning under the joint (image, label)-noise.
arXiv Detail & Related papers (2023-02-10T07:50:34Z) - Is your noise correction noisy? PLS: Robustness to label noise with two
stage detection [16.65296285599679]
This paper proposes to improve the correction accuracy of noisy samples once they have been detected.
In many state-of-the-art contributions, a two phase approach is adopted where the noisy samples are detected before guessing a corrected pseudo-label.
We propose the pseudo-loss, a simple metric that we find to be strongly correlated with pseudo-label correctness on noisy samples.
arXiv Detail & Related papers (2022-10-10T11:32:28Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
Learning with noisy labels (LNL) aims at designing strategies to improve model performance and generalization by mitigating the effects of model overfitting to noisy labels.
Recent advances employ the predicted label distributions of individual samples to perform noise verification and noisy label correction, easily giving rise to confirmation bias.
We propose Neighborhood Collective Estimation, in which the predictive reliability of a candidate sample is re-estimated by contrasting it against its feature-space nearest neighbors.
arXiv Detail & Related papers (2022-08-05T14:47:22Z) - Identifying Hard Noise in Long-Tailed Sample Distribution [76.16113794808001]
We introduce Noisy Long-Tailed Classification (NLT)
Most de-noising methods fail to identify the hard noises.
We design an iterative noisy learning framework called Hard-to-Easy (H2E)
arXiv Detail & Related papers (2022-07-27T09:03:03Z) - Robust Face Anti-Spoofing with Dual Probabilistic Modeling [49.14353429234298]
We propose a unified framework called Dual Probabilistic Modeling (DPM), with two dedicated modules, DPM-LQ (Label Quality aware learning) and DPM-DQ (Data Quality aware learning)
DPM-LQ is able to produce robust feature representations without overfitting to the distribution of noisy semantic labels.
DPM-DQ can eliminate data noise from False Reject' and False Accept' during inference by correcting the prediction confidence of noisy data based on its quality distribution.
arXiv Detail & Related papers (2022-04-27T03:44:18Z) - Noise-Resistant Deep Metric Learning with Probabilistic Instance
Filtering [59.286567680389766]
Noisy labels are commonly found in real-world data, which cause performance degradation of deep neural networks.
We propose Probabilistic Ranking-based Instance Selection with Memory (PRISM) approach for DML.
PRISM calculates the probability of a label being clean, and filters out potentially noisy samples.
arXiv Detail & Related papers (2021-08-03T12:15:25Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z) - A Second-Order Approach to Learning with Instance-Dependent Label Noise [58.555527517928596]
The presence of label noise often misleads the training of deep neural networks.
We show that the errors in human-annotated labels are more likely to be dependent on the difficulty levels of tasks.
arXiv Detail & Related papers (2020-12-22T06:36:58Z) - GANs for learning from very high class conditional noisy labels [1.6516902135723865]
We use Generative Adversarial Networks (GANs) to design a class conditional label noise (CCN) robust scheme for binary classification.
It first generates a set of correctly labelled data points from noisy labelled data and 0.1% or 1% clean labels.
arXiv Detail & Related papers (2020-10-19T15:01:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.