論文の概要: Physics-Informed Computer Vision: A Review and Perspectives
- arxiv url: http://arxiv.org/abs/2305.18035v2
- Date: Thu, 1 Jun 2023 03:40:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 21:05:36.472872
- Title: Physics-Informed Computer Vision: A Review and Perspectives
- Title(参考訳): 物理に変形したコンピュータビジョン : レビューと展望
- Authors: Chayan Banerjee, Kien Nguyen, Clinton Fookes, George Karniadakis
- Abstract要約: 機械学習フレームワークにおける物理情報の取り込みは、多くのアプリケーションドメインを開放し、変換している。
本稿では,物理法則によるコンピュータビジョンタスクの定式化とアプローチに関する体系的な文献レビューを行う。
- 参考スコア(独自算出の注目度): 19.93375433597369
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Incorporation of physical information in machine learning frameworks are
opening and transforming many application domains. Here the learning process is
augmented through the induction of fundamental knowledge and governing physical
laws. In this work we explore their utility for computer vision tasks in
interpreting and understanding visual data. We present a systematic literature
review of formulation and approaches to computer vision tasks guided by
physical laws. We begin by decomposing the popular computer vision pipeline
into a taxonomy of stages and investigate approaches to incorporate governing
physical equations in each stage. Existing approaches in each task are analyzed
with regard to what governing physical processes are modeled, formulated and
how they are incorporated, i.e. modify data (observation bias), modify networks
(inductive bias), and modify losses (learning bias). The taxonomy offers a
unified view of the application of the physics-informed capability,
highlighting where physics-informed learning has been conducted and where the
gaps and opportunities are. Finally, we highlight open problems and challenges
to inform future research. While still in its early days, the study of
physics-informed computer vision has the promise to develop better computer
vision models that can improve physical plausibility, accuracy, data efficiency
and generalization in increasingly realistic applications.
- Abstract(参考訳): 機械学習フレームワークにおける物理情報の取り込みは、多くのアプリケーションドメインを開放し、変換している。
ここでは、基本的な知識の誘導と物理法則の統制を通じて学習プロセスが強化される。
本研究では,視覚データの解釈と理解におけるコンピュータビジョンタスクの有用性について検討する。
本稿では,物理法則に基づくコンピュータビジョンタスクの定式化とアプローチに関する体系的文献レビューを行う。
まず,一般的なコンピュータビジョンパイプラインを段階分類に分解し,各段階に物理方程式を組み込む手法を検討する。
各タスクにおける既存のアプローチは、物理プロセスがモデル化され、形式化され、どのように組み込まれているか、すなわちデータの修正(観察バイアス)、ネットワークの変更(帰納バイアス)、損失の修正(学習バイアス)に関して分析される。
分類学は、物理学インフォームド能力の適用を統一的に捉え、物理学インフォームド・ラーニングがどこで行われ、ギャップと機会がどこにあるかを強調している。
最後に、今後の研究を知らせるためのオープンな問題と課題を強調します。
まだ初期の段階だが、物理に変形したコンピュータビジョンの研究は、より現実的なアプリケーションにおいて、物理的実用性、正確性、データ効率、一般化を改善できるより良いコンピュータビジョンモデルの開発を約束している。
関連論文リスト
- Fairness and Bias Mitigation in Computer Vision: A Survey [61.01658257223365]
コンピュータビジョンシステムは、高精細な現実世界のアプリケーションにますますデプロイされている。
歴史的または人為的なデータにおいて差別的な傾向を伝播または増幅しないことを確実にする必要がある。
本稿では,コンピュータビジョンの文脈における現在進行中の傾向と成功をまとめた,公平性に関する総合的な調査を行う。
論文 参考訳(メタデータ) (2024-08-05T13:44:22Z) - A Survey on Physics Informed Reinforcement Learning: Review and Open
Problems [25.3906503332344]
本稿では,強化学習アプローチにおける物理情報の導入に関する文献を概説する。
既存の研究を分類するためのバックボーンとして強化学習パイプラインを用いた新しい分類法を導入する。
この初期段階の分野は、実世界のシナリオにおける物理的な妥当性、精度、データ効率、適用性を高めて強化学習アルゴリズムを強化する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-09-05T02:45:18Z) - Physics-Informed Machine Learning: A Survey on Problems, Methods and
Applications [31.157298426186653]
最近の研究は、物理的な事前および収集されたデータを組み込むことによって、機械学習モデルに潜在的な利点を提供することを示している。
本稿では、経験的データと利用可能な物理的事前知識を活用するモデルを構築することを目的とした、Physical-Informed Machine Learning(PIML)という学習パラダイムを提案する。
論文 参考訳(メタデータ) (2022-11-15T11:34:30Z) - A Survey on Graph Neural Networks and Graph Transformers in Computer Vision: A Task-Oriented Perspective [71.03621840455754]
グラフニューラルネットワーク(GNN)はグラフ表現学習において勢いを増している。
Graph Transformerは、グラフ構造をTransformerアーキテクチャに組み込んで、局所的な近傍集約の制限を克服します。
本稿では,タスク指向の観点から,コンピュータビジョンにおけるGNNとグラフトランスフォーマーの総合的なレビューを行う。
論文 参考訳(メタデータ) (2022-09-27T08:10:14Z) - Deep Learning to See: Towards New Foundations of Computer Vision [88.69805848302266]
この本はコンピュータビジョンの分野における科学的進歩を批判している。
情報に基づく自然法則の枠組みにおける視覚の研究を提案する。
論文 参考訳(メタデータ) (2022-06-30T15:20:36Z) - K-LITE: Learning Transferable Visual Models with External Knowledge [242.3887854728843]
K-LITE (Knowledge-augmented Language- Image Training and Evaluation) は、外部知識を活用して伝達可能な視覚システムを構築する戦略である。
トレーニングでは、WordNetとWiktionaryの知識で自然言語のエンティティを豊かにする。
評価において、自然言語は外部知識で拡張され、学習された視覚概念を参照するために使用される。
論文 参考訳(メタデータ) (2022-04-20T04:47:01Z) - Physics-informed Reinforcement Learning for Perception and Reasoning
about Fluids [0.0]
本研究では,流体知覚と観測からの推論のための物理インフォームド強化学習戦略を提案する。
本研究では,コモディティカメラで自由表面を観察した未確認液体の追跡(知覚)と解析(推論)を行う手法を開発した。
論文 参考訳(メタデータ) (2022-03-11T07:01:23Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
機械学習の研究は転換点にある。
研究の関心は、高度にパラメータ化されたモデルのパフォーマンス向上から、非常に具体的なタスクへとシフトしている。
このホワイトペーパーは、機械学習研究におけるこの新興分野の紹介と議論を提供する。
論文 参考訳(メタデータ) (2020-12-21T15:07:19Z) - Physical reservoir computing -- An introductory perspective [0.0]
物理貯水池計算は、物理系の複雑な力学を情報処理装置として利用することができる。
本稿では,ソフトロボティクスの例を用いて,フレームワークの可能性を説明する。
論文 参考訳(メタデータ) (2020-05-03T05:39:06Z) - Visual Grounding of Learned Physical Models [66.04898704928517]
人間は、物体の物理的特性を直感的に認識し、複雑な相互作用に従事している場合でも、その動きを予測する。
我々は、物理を同時に推論し、視覚と力学の先行に基づく将来の予測を行うニューラルモデルを提案する。
実験により、我々のモデルはいくつかの観測範囲内で物理的特性を推測できることが示され、モデルが目に見えないシナリオに迅速に適応し、将来正確な予測を行うことができる。
論文 参考訳(メタデータ) (2020-04-28T17:06:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。