論文の概要: A Survey on Physics Informed Reinforcement Learning: Review and Open
Problems
- arxiv url: http://arxiv.org/abs/2309.01909v1
- Date: Tue, 5 Sep 2023 02:45:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 16:43:11.858524
- Title: A Survey on Physics Informed Reinforcement Learning: Review and Open
Problems
- Title(参考訳): 物理学インフォームド強化学習に関する調査 : レビューとオープン問題
- Authors: Chayan Banerjee, Kien Nguyen, Clinton Fookes, Maziar Raissi
- Abstract要約: 本稿では,強化学習アプローチにおける物理情報の導入に関する文献を概説する。
既存の研究を分類するためのバックボーンとして強化学習パイプラインを用いた新しい分類法を導入する。
この初期段階の分野は、実世界のシナリオにおける物理的な妥当性、精度、データ効率、適用性を高めて強化学習アルゴリズムを強化する大きな可能性を秘めている。
- 参考スコア(独自算出の注目度): 25.3906503332344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The inclusion of physical information in machine learning frameworks has
revolutionized many application areas. This involves enhancing the learning
process by incorporating physical constraints and adhering to physical laws. In
this work we explore their utility for reinforcement learning applications. We
present a thorough review of the literature on incorporating physics
information, as known as physics priors, in reinforcement learning approaches,
commonly referred to as physics-informed reinforcement learning (PIRL). We
introduce a novel taxonomy with the reinforcement learning pipeline as the
backbone to classify existing works, compare and contrast them, and derive
crucial insights. Existing works are analyzed with regard to the
representation/ form of the governing physics modeled for integration, their
specific contribution to the typical reinforcement learning architecture, and
their connection to the underlying reinforcement learning pipeline stages. We
also identify core learning architectures and physics incorporation biases
(i.e., observational, inductive and learning) of existing PIRL approaches and
use them to further categorize the works for better understanding and
adaptation. By providing a comprehensive perspective on the implementation of
the physics-informed capability, the taxonomy presents a cohesive approach to
PIRL. It identifies the areas where this approach has been applied, as well as
the gaps and opportunities that exist. Additionally, the taxonomy sheds light
on unresolved issues and challenges, which can guide future research. This
nascent field holds great potential for enhancing reinforcement learning
algorithms by increasing their physical plausibility, precision, data
efficiency, and applicability in real-world scenarios.
- Abstract(参考訳): 機械学習フレームワークに物理情報を含めることで、多くのアプリケーション分野に革命をもたらした。
これには、物理的な制約を取り入れ、物理的な法則に固執することで学習プロセスを強化することが含まれる。
本研究は, 強化学習への応用について検討する。
本稿では,物理プライオリティーとして知られる物理情報の統合に関する文献の徹底的なレビューを行い,一般に物理インフォームド強化学習(pirl)と呼ばれる強化学習アプローチについて述べる。
我々は,既存の作品を分類し,比較・対比し,重要な知見を導出するためのバックボーンとして,強化学習パイプラインを用いた新しい分類法を提案する。
既存の研究は、統合のためにモデル化された支配物理の表現・形式、典型的な強化学習アーキテクチャへの具体的な貢献、基礎となる強化学習パイプラインステージとの関係について分析される。
また,既存のpirlアプローチにおけるコア・ラーニング・アーキテクチャと物理学的統合バイアス(観察的,帰納的,学習)を特定し,それらをより理解と適応のためにさらに分類するために利用する。
物理インフォームド能力の実装に関する包括的な視点を提供することにより、分類学はPIRLに対して凝集的なアプローチを示す。
このアプローチが適用された領域と、存在するギャップと機会を特定します。
さらに、分類学は未解決の問題や今後の研究を導く課題に光を当てている。
この新たな分野は、実世界のシナリオにおける物理的な妥当性、精度、データ効率、適用性を高めて強化学習アルゴリズムを強化する大きな可能性を秘めている。
関連論文リスト
- Understanding Machine Learning Paradigms through the Lens of Statistical Thermodynamics: A tutorial [0.0]
このチュートリアルは、エントロピー、自由エネルギー、そして機械学習に使用される変分推論のような高度なテクニックを掘り下げる。
物理的システムの振る舞いを深く理解することで、より効果的で信頼性の高い機械学習モデルが得られることを示す。
論文 参考訳(メタデータ) (2024-11-24T18:20:05Z) - Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Machine Learning with Physics Knowledge for Prediction: A Survey [16.96920919164813]
本研究では,機械学習と物理知識を組み合わせて予測と予測を行う手法とモデルについて検討する。
まず、目的関数、構造化予測モデル、データ拡張を通じて、アーキテクチャレベルでの物理知識を取り入れることを検討する。
第二に、データを物理知識とみなし、マルチタスク、メタ、コンテキスト学習をデータ駆動方式で物理知識を組み込む代替アプローチとして考える。
論文 参考訳(メタデータ) (2024-08-19T09:36:07Z) - Physics-Informed Computer Vision: A Review and Perspectives [22.71741766133866]
機械学習フレームワークに物理情報の組み入れが、多くのアプリケーションドメインを開放し、変換している。
本稿では,250以上の物理法則によるコンピュータビジョンタスクの定式化とアプローチに関する体系的な文献レビューを行う。
論文 参考訳(メタデータ) (2023-05-29T11:55:11Z) - Symmetry Group Equivariant Architectures for Physics [52.784926970374556]
機械学習の分野では、対称性に対する認識が目覚ましいパフォーマンスのブレークスルーを引き起こしている。
物理学のコミュニティと、より広い機械学習のコミュニティの両方に、理解すべきことがたくさんある、と私たちは主張する。
論文 参考訳(メタデータ) (2022-03-11T18:27:04Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
本稿では,知識グラフ拡張ネットワーク(KGAN)を提案する。
KGANは感情の特徴表現を、文脈、構文、知識に基づく複数の視点から捉えている。
3つの人気のあるABSAベンチマークの実験は、我々のKGANの有効性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-01-13T08:25:53Z) - Physics-Guided Deep Learning for Dynamical Systems: A survey [5.733401663293044]
伝統的な物理学に基づくモデルは解釈可能であるが、厳密な仮定に依存している。
ディープラーニングは、複雑なパターンを効率的に認識し、非線形力学をエミュレートするための新しい代替手段を提供する。
物理学に基づくモデリングと最先端のDLモデルの両方を最大限に活用して、科学的な問題を解決することを目指している。
論文 参考訳(メタデータ) (2021-07-02T20:59:03Z) - Physics guided machine learning using simplified theories [0.0]
機械学習、特にディープラーニングの最近の応用は、物理科学における統計推論アプローチの汎用性に対処する必要性を動機付ける。
このようなデータ駆動予測エンジンの精度を向上させるために,モジュール型物理誘導機械学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-12-18T21:30:40Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
政治外学習の最近の進歩の上に構築された,概念的にシンプルで,汎用的で,モジュール的な補完的アプローチについて検討する。
このフレームワークは確率論的推論文学のアイデアにインスパイアされ、堅牢な非政治学習と事前の行動を組み合わせる。
提案手法は,メタ強化学習ベースラインと比較して,ホールドアウトタスクにおける競合適応性能を実現し,複雑なスパース・リワードシナリオにスケールすることができる。
論文 参考訳(メタデータ) (2020-09-10T14:16:58Z) - A Survey on Deep Learning for Localization and Mapping: Towards the Age
of Spatial Machine Intelligence [48.67755344239951]
包括的調査を行い、深層学習を用いた局所化とマッピングのための新しい分類法を提案する。
オードメトリ推定、マッピング、グローバルローカライゼーション、同時ローカライゼーション、マッピングなど、幅広いトピックがカバーされている。
この研究がロボティクス、コンピュータビジョン、機械学習コミュニティの新たな成果を結び付けることを願っている。
論文 参考訳(メタデータ) (2020-06-22T19:01:21Z) - A Review on Intelligent Object Perception Methods Combining
Knowledge-based Reasoning and Machine Learning [60.335974351919816]
物体知覚はコンピュータビジョンの基本的なサブフィールドである。
最近の研究は、物体の視覚的解釈のインテリジェンスレベルを拡大するために、知識工学を統合する方法を模索している。
論文 参考訳(メタデータ) (2019-12-26T13:26:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。