論文の概要: Learning Causal Graphs via Monotone Triangular Transport Maps
- arxiv url: http://arxiv.org/abs/2305.18210v1
- Date: Fri, 26 May 2023 13:24:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-30 14:12:38.082449
- Title: Learning Causal Graphs via Monotone Triangular Transport Maps
- Title(参考訳): モノトン三角トランスポートマップによる因果グラフの学習
- Authors: Sina Akbari, Luca Ganassali
- Abstract要約: 最適輸送(OT)を用いたデータからの因果構造学習の問題点について検討する。
構造方程式やノイズ分布を仮定せずにマルコフ同値まで因果発見するアルゴリズムを提案する。
提案手法と人工と実世界の両方のデータセットにおける技術状況を比較した実験結果を提供する。
- 参考スコア(独自算出の注目度): 1.6752182911522522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of causal structure learning from data using optimal
transport (OT). Specifically, we first provide a constraint-based method which
builds upon lower-triangular monotone parametric transport maps to design
conditional independence tests which are agnostic to the noise distribution. We
provide an algorithm for causal discovery up to Markov Equivalence with no
assumptions on the structural equations/noise distributions, which allows for
settings with latent variables. Our approach also extends to score-based causal
discovery by providing a novel means for defining scores. This allows us to
uniquely recover the causal graph under additional identifiability and
structural assumptions, such as additive noise or post-nonlinear models. We
provide experimental results to compare the proposed approach with the state of
the art on both synthetic and real-world datasets.
- Abstract(参考訳): 最適輸送(OT)を用いたデータから因果構造学習の問題点を考察する。
具体的には, 雑音分布に無依存な条件独立性テストを設計するために, 低三角単調パラメトリックトランスポートマップを基盤とした制約ベース手法を提案する。
マルコフ同値まで因果発見のためのアルゴリズムを構造方程式/雑音分布を仮定することなく提供し,潜在変数の設定を可能にする。
このアプローチは,スコアを定義する新しい手段を提供することによって,スコアに基づく因果発見にも拡張される。
これにより、付加的な雑音や非線型モデルのような追加の識別可能性や構造的仮定の下で因果グラフを一意に復元することができる。
提案手法を合成データと実世界データの両方における最先端技術と比較する実験結果を提供する。
関連論文リスト
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
拡散確率モデル(Denoising Diffusion Probabilistic Models, DDPM)は、例外的な品質を持つ同時代の生成モデルである。
本研究では,ベイズ式による確率推定過程を分解するために,専用設計を用いたリンク予測のための新しい生成モデルを構築した。
提案手法は,(1)再トレーニングを伴わないデータセット間の転送可能性,(2)限られたトレーニングデータに対する有望な一般化,(3)グラフ敵攻撃に対する堅牢性など,多くの利点を示す。
論文 参考訳(メタデータ) (2024-09-13T02:23:55Z) - Hybrid Top-Down Global Causal Discovery with Local Search for Linear and Nonlinear Additive Noise Models [2.0738462952016232]
関数因果モデルに基づく手法は、ユニークなグラフを識別することができるが、次元性の呪いや強いパラメトリックな仮定を課すことに苦しむ。
本研究では,局所的な因果構造を利用した観測データにおけるグローバル因果発見のための新しいハイブリッド手法を提案する。
我々は, 合成データに対する実証的な検証を行い, 正確性および最悪の場合の時間複雑度を理論的に保証する。
論文 参考訳(メタデータ) (2024-05-23T12:28:16Z) - Stochastic interpolants with data-dependent couplings [31.854717378556334]
補間剤の枠組みを用いて、ベースとターゲット密度を補間する方法を定式化する。
これらのトランスポートマップは、標準的な独立な設定に類似した単純な2乗損失回帰問題を解くことで学習可能であることを示す。
論文 参考訳(メタデータ) (2023-10-05T17:46:31Z) - Causal Discovery with Score Matching on Additive Models with Arbitrary
Noise [37.13308785728276]
因果発見法は、構造識別可能性を保証するために必要な仮定のセットによって本質的に制約される。
本稿では,雑音項のガウス性に反するエッジ反転のリスクを解析し,この仮説の下での推論の欠点を示す。
本稿では,一般的な雑音分布を持つ付加非線形モデルに基づいて生成されたデータから,因果グラフ内の変数の位相的順序付けを推定する新しい手法を提案する。
これは、最小限の仮定と、合成データに基づいて実験的にベンチマークされた技術性能の状態を持つ因果探索アルゴリズムであるNoGAMに繋がる。
論文 参考訳(メタデータ) (2023-04-06T17:50:46Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Score matching enables causal discovery of nonlinear additive noise
models [63.93669924730725]
次世代のスケーラブル因果発見手法の設計方法について述べる。
本稿では,スコアのヤコビアンを効率的に近似し,因果グラフを復元する手法を提案する。
論文 参考訳(メタデータ) (2022-03-08T21:34:46Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Learning non-Gaussian graphical models via Hessian scores and triangular
transport [6.308539010172309]
連続分布と非ガウス分布のマルコフ構造を学習するアルゴリズムを提案する。
このアルゴリズムは三角トランスポートマップによって誘導される決定論的結合を用いて密度を推定し、グラフのスパース性を明らかにするために地図内のスパース構造を反復的に活用する。
論文 参考訳(メタデータ) (2021-01-08T16:42:42Z) - Learning Noise-Aware Encoder-Decoder from Noisy Labels by Alternating
Back-Propagation for Saliency Detection [54.98042023365694]
本稿では,ノイズを考慮したエンコーダ・デコーダ・フレームワークを提案する。
提案モデルはニューラルネットワークによってパラメータ化された2つのサブモデルから構成される。
論文 参考訳(メタデータ) (2020-07-23T18:47:36Z) - Generative Modeling with Denoising Auto-Encoders and Langevin Sampling [88.83704353627554]
DAEとDSMの両方がスムーズな人口密度のスコアを推定することを示した。
次に、この結果をarXiv:1907.05600のホモトピー法に適用し、その経験的成功を理論的に正当化する。
論文 参考訳(メタデータ) (2020-01-31T23:50:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。