論文の概要: Causal discovery for linear causal model with correlated noise: an Adversarial Learning Approach
- arxiv url: http://arxiv.org/abs/2601.01368v1
- Date: Sun, 04 Jan 2026 04:40:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-06 16:25:22.260202
- Title: Causal discovery for linear causal model with correlated noise: an Adversarial Learning Approach
- Title(参考訳): 相関雑音を有する線形因果モデルに対する因果発見--逆学習アプローチ
- Authors: Mujin Zhou, Junzhe Zhang,
- Abstract要約: 本稿では,f-GANフレームワークに基づくアプローチを提案し,重み値に依存しない二項因果構造を学習する。
この問題は、真のデータ分布とモデル生成分布とのf分割を最小化するのと等価であることを示す。
- 参考スコア(独自算出の注目度): 5.276544734565369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal discovery from data with unmeasured confounding factors is a challenging problem. This paper proposes an approach based on the f-GAN framework, learning the binary causal structure independent of specific weight values. We reformulate the structure learning problem as minimizing Bayesian free energy and prove that this problem is equivalent to minimizing the f-divergence between the true data distribution and the model-generated distribution. Using the f-GAN framework, we transform this objective into a min-max adversarial optimization problem. We implement the gradient search in the discrete graph space using Gumbel-Softmax relaxation.
- Abstract(参考訳): 不測の共起因子を持つデータからの因果発見は難しい問題である。
本稿では,f-GANフレームワークに基づくアプローチを提案し,重み値に依存しない二項因果構造を学習する。
構造学習問題をベイズ自由エネルギーの最小化として再検討し、この問題が真のデータ分布とモデル生成分布の間のf偏差の最小化と等価であることを証明した。
f-GAN フレームワークを用いて、この目的を min-max 逆最適化問題に変換する。
Gumbel-Softmax 緩和を用いた離散グラフ空間の勾配探索を実装した。
関連論文リスト
- On the Wasserstein Convergence and Straightness of Rectified Flow [54.580605276017096]
Rectified Flow (RF) は、ノイズからデータへの直流軌跡の学習を目的とした生成モデルである。
RFのサンプリング分布とターゲット分布とのワッサーシュタイン距離に関する理論的解析を行った。
本稿では,従来の経験的知見と一致した1-RFの特異性と直線性を保証する一般的な条件について述べる。
論文 参考訳(メタデータ) (2024-10-19T02:36:11Z) - Optimal Transport for Structure Learning Under Missing Data [31.240965564055138]
そこで本稿では,最適なトランスポートに基づくデータから因果構造を学習するためのスコアベースアルゴリズムを提案する。
我々のフレームワークは,ほとんどのシミュレーションや実データ設定において競合する手法よりも,真の因果構造を効果的に回復することが示されている。
論文 参考訳(メタデータ) (2024-02-23T10:49:04Z) - Learning Causal Graphs via Monotone Triangular Transport Maps [1.6752182911522522]
最適輸送(OT)を用いたデータからの因果構造学習の問題点について検討する。
構造方程式やノイズ分布を仮定せずにマルコフ同値まで因果発見するアルゴリズムを提案する。
提案手法と人工と実世界の両方のデータセットにおける技術状況を比較した実験結果を提供する。
論文 参考訳(メタデータ) (2023-05-26T13:24:17Z) - Smoothly Giving up: Robustness for Simple Models [30.56684535186692]
このようなモデルをトレーニングするアルゴリズムの例としては、ロジスティック回帰とブースティングがある。
我々は、標準凸損失関数間のチューニングを行う、$Served-Servedジョイント凸損失関数を用いて、そのようなモデルを堅牢に訓練する。
また、ロジスティック回帰のためのCOVID-19データセットを強化し、複数の関連ドメインにまたがる効果のアプローチを強調します。
論文 参考訳(メタデータ) (2023-02-17T19:48:11Z) - Learning Latent Structural Causal Models [31.686049664958457]
機械学習タスクでは、画像ピクセルや高次元ベクトルのような低レベルのデータを扱うことが多い。
本稿では,潜在構造因果モデルの因果変数,構造,パラメータについて共同推論を行う,抽出可能な近似推定手法を提案する。
論文 参考訳(メタデータ) (2022-10-24T20:09:44Z) - Score matching enables causal discovery of nonlinear additive noise
models [63.93669924730725]
次世代のスケーラブル因果発見手法の設計方法について述べる。
本稿では,スコアのヤコビアンを効率的に近似し,因果グラフを復元する手法を提案する。
論文 参考訳(メタデータ) (2022-03-08T21:34:46Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
我々は、軽度の仮定の下で、識別性と学習可能性に関する保証を提供する。
我々は,線形制約付き結合テンソル分解に基づく効率的なアルゴリズムを開発し,スケーラブルで保証可能な解を得る。
論文 参考訳(メタデータ) (2021-01-17T07:48:45Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z) - Sparsely constrained neural networks for model discovery of PDEs [0.0]
本稿では,任意のスパース回帰手法を用いて,ディープラーニングに基づくサロゲートのスパースパターンを決定するモジュラーフレームワークを提案する。
異なるネットワークアーキテクチャと疎度推定器がモデル発見精度と収束性を,いくつかのベンチマーク例でどのように改善するかを示す。
論文 参考訳(メタデータ) (2020-11-09T11:02:40Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。