論文の概要: High Accuracy and Low Regret for User-Cold-Start Using Latent Bandits
- arxiv url: http://arxiv.org/abs/2305.18305v1
- Date: Fri, 12 May 2023 11:05:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-04 11:39:44.979286
- Title: High Accuracy and Low Regret for User-Cold-Start Using Latent Bandits
- Title(参考訳): 潜在バンディットを用いたユーザコールドスタートの高精度・低後悔
- Authors: David Young, Douglas Leith
- Abstract要約: 我々は,推薦システムに参加する新規ユーザに対して,コールドスタート問題に対処するための新しい潜在帯域アルゴリズムを開発した。
この新しいアルゴリズムは、高い精度と低い後悔の両方を同時に達成し、芸術の状態を著しく上回る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a novel latent-bandit algorithm for tackling the cold-start
problem for new users joining a recommender system. This new algorithm
significantly outperforms the state of the art, simultaneously achieving both
higher accuracy and lower regret.
- Abstract(参考訳): 我々は,推薦システムに参加する新規ユーザに対して,コールドスタート問題に対処するための新しい潜在帯域アルゴリズムを開発した。
この新しいアルゴリズムは、高い精度と低い後悔の両方を同時に達成し、芸術の状態を著しく上回る。
関連論文リスト
- Near-Optimal Algorithm for Non-Stationary Kernelized Bandits [6.379833644595456]
時変ベイズ最適化(英語版)とも呼ばれる非定常カーネル化バンドイット問題(KB)について検討する。
我々は,2乗指数およびマタン核を持つ非定常KBに対して,アルゴリズムに依存しない最初のリフレッシュローバウンドを示す。
本稿では,ランダムな置換による位相除去を再開する手法を提案する。
論文 参考訳(メタデータ) (2024-10-21T14:28:26Z) - Regret-Optimal Model-Free Reinforcement Learning for Discounted MDPs
with Short Burn-In Time [13.545356254920584]
本稿では,分散削減を利用したモデルフリーアルゴリズムと,実行方針を低速かつ適応的に切り替える新しい手法を提案する。
これは割引設定における最初の後悔の最適モデルフリーアルゴリズムであり、バーンイン時間の短縮によるメリットがある。
論文 参考訳(メタデータ) (2023-05-24T20:22:43Z) - Contextual Bandits with Smooth Regret: Efficient Learning in Continuous
Action Spaces [14.366265951396587]
我々は、大規模または連続的なアクション空間に対する効率的な汎用的コンテキスト帯域幅アルゴリズムを設計する。
本稿では,従来提案されていた代替案に支配的な文脈的包帯に対して,スムーズな後悔の念を抱く概念を提案する。
我々のアルゴリズムは、標準的な後悔の下で以前のminimax/Paretoの最適保証を回復するために使用することができる。
論文 参考訳(メタデータ) (2022-07-12T21:27:09Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Upper Confidence Bounds for Combining Stochastic Bandits [52.10197476419621]
バンディットアルゴリズムを結合する簡単な手法を提案する。
私たちのアプローチは、個々のbanditアルゴリズムのそれぞれを、より高いレベルのn$-armed bandit問題のアームとして扱う"meta-ucb"手順に基づいています。
論文 参考訳(メタデータ) (2020-12-24T05:36:29Z) - Learned Block Iterative Shrinkage Thresholding Algorithm for
Photothermal Super Resolution Imaging [52.42007686600479]
深層ニューラルネットワークに展開する反復アルゴリズムを用いて,学習したブロックスパース最適化手法を提案する。
本稿では、正規化パラメータの選択を学ぶことができる学習ブロック反復収縮しきい値アルゴリズムを使用することの利点を示す。
論文 参考訳(メタデータ) (2020-12-07T09:27:16Z) - Experimental Design for Regret Minimization in Linear Bandits [19.8309784360219]
オンライン・リニア・バンドレットにおける後悔を最小限に抑える設計に基づく新しいアルゴリズムを提案する。
我々は、現在最先端の有限時間後悔保証を提供し、このアルゴリズムが帯域幅と半帯域幅の両方のフィードバックシステムに適用可能であることを示す。
論文 参考訳(メタデータ) (2020-11-01T17:59:19Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
複数の次元に沿った最先端技術を改善する新しいアルゴリズムを提案する。
非文脈線形帯域の特別な場合において、学習地平線に対して最小限の最適性を確立する。
論文 参考訳(メタデータ) (2020-10-23T09:12:47Z) - Comparator-adaptive Convex Bandits [77.43350984086119]
我々は,コンパレータのノルムが小さい場合,残差が小さい凸バンディットアルゴリズムを開発した。
アイデアを拡張して、リプシッツや滑らかな損失関数で包帯を凸する。
論文 参考訳(メタデータ) (2020-07-16T16:33:35Z) - Minimizing Dynamic Regret and Adaptive Regret Simultaneously [60.17824125301273]
動的後悔と適応的後悔を同時に最小化できる新しいオンラインアルゴリズムを提案する。
我々の理論的保証は、あるアルゴリズムが任意の間隔で動的後悔を最小化できるという意味でさらに強い。
論文 参考訳(メタデータ) (2020-02-06T03:32:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。