Statistically Efficient Bayesian Sequential Experiment Design via
Reinforcement Learning with Cross-Entropy Estimators
- URL: http://arxiv.org/abs/2305.18435v2
- Date: Mon, 5 Feb 2024 01:20:34 GMT
- Title: Statistically Efficient Bayesian Sequential Experiment Design via
Reinforcement Learning with Cross-Entropy Estimators
- Authors: Tom Blau, Iadine Chades, Amir Dezfouli, Daniel Steinberg, Edwin V.
Bonilla
- Abstract summary: Reinforcement learning can learn amortised design policies for designing sequences of experiments.
We propose the use of an alternative estimator based on the cross-entropy of the joint model distribution and a flexible proposal distribution.
Our method overcomes the exponential-sample complexity of previous approaches and provide more accurate estimates of high EIG values.
- Score: 15.461927416747582
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reinforcement learning can learn amortised design policies for designing
sequences of experiments. However, current amortised methods rely on estimators
of expected information gain (EIG) that require an exponential number of
samples on the magnitude of the EIG to achieve an unbiased estimation. We
propose the use of an alternative estimator based on the cross-entropy of the
joint model distribution and a flexible proposal distribution. This proposal
distribution approximates the true posterior of the model parameters given the
experimental history and the design policy. Our method overcomes the
exponential-sample complexity of previous approaches and provide more accurate
estimates of high EIG values. More importantly, it allows learning of superior
design policies, and is compatible with continuous and discrete design spaces,
non-differentiable likelihoods and even implicit probabilistic models.
Related papers
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
In this paper, we aim to help address such challenges by developing an textitinfluence functions framework.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models [6.647819824559201]
We study the large-sample properties of a likelihood-based approach for estimating conditional deep generative models.
Our results lead to the convergence rate of a sieve maximum likelihood estimator for estimating the conditional distribution.
arXiv Detail & Related papers (2024-10-02T20:46:21Z) - Unveiling the Statistical Foundations of Chain-of-Thought Prompting Methods [59.779795063072655]
Chain-of-Thought (CoT) prompting and its variants have gained popularity as effective methods for solving multi-step reasoning problems.
We analyze CoT prompting from a statistical estimation perspective, providing a comprehensive characterization of its sample complexity.
arXiv Detail & Related papers (2024-08-25T04:07:18Z) - Scalable method for Bayesian experimental design without integrating
over posterior distribution [0.0]
We address the computational efficiency in solving the A-optimal Bayesian design of experiments problems.
A-optimality is a widely used and easy-to-interpret criterion for Bayesian experimental design.
This study presents a novel likelihood-free approach to the A-optimal experimental design.
arXiv Detail & Related papers (2023-06-30T12:40:43Z) - Variational Sequential Optimal Experimental Design using Reinforcement
Learning [0.0]
We introduce variational sequential Optimal Experimental Design (vsOED), a new method for optimally designing a finite sequence of experiments under a Bayesian framework and with information-gain utilities.
Our vsOED results indicate substantially improved sample efficiency and reduced number of forward model simulations compared to previous sequential design algorithms.
arXiv Detail & Related papers (2023-06-17T21:47:19Z) - Metrics for Bayesian Optimal Experiment Design under Model
Misspecification [3.04585143845864]
The utility function defines the objective of the experiment where a common utility function is the information gain.
This article introduces an expanded framework for this process, where we go beyond the traditional Expected Information Gain criteria.
The functionality of the framework is showcased through its application to a scenario involving a linearized spring mass damper system and an F-16 model.
arXiv Detail & Related papers (2023-04-17T02:13:20Z) - Design Amortization for Bayesian Optimal Experimental Design [70.13948372218849]
We build off of successful variational approaches, which optimize a parameterized variational model with respect to bounds on the expected information gain (EIG)
We present a novel neural architecture that allows experimenters to optimize a single variational model that can estimate the EIG for potentially infinitely many designs.
arXiv Detail & Related papers (2022-10-07T02:12:34Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
We consider what it would look like to fold as much of the trajectory optimization pipeline as possible into the modeling problem.
The core of our technical approach lies in a diffusion probabilistic model that plans by iteratively denoising trajectories.
arXiv Detail & Related papers (2022-05-20T07:02:03Z) - Gradient-based Bayesian Experimental Design for Implicit Models using
Mutual Information Lower Bounds [20.393359858407162]
We introduce a framework for Bayesian experimental design (BED) with implicit models, where the data-generating distribution is intractable but sampling from it is still possible.
In order to find optimal experimental designs for such models, our approach maximises mutual information lower bounds that are parametrised by neural networks.
By training a neural network on sampled data, we simultaneously update network parameters and designs using gradient-ascent.
arXiv Detail & Related papers (2021-05-10T13:59:25Z) - Optimal Bayesian experimental design for subsurface flow problems [77.34726150561087]
We propose a novel approach for development of chaos expansion (PCE) surrogate model for the design utility function.
This novel technique enables the derivation of a reasonable quality response surface for the targeted objective function with a computational budget comparable to several single-point evaluations.
arXiv Detail & Related papers (2020-08-10T09:42:59Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.