Variational Sequential Optimal Experimental Design using Reinforcement
Learning
- URL: http://arxiv.org/abs/2306.10430v1
- Date: Sat, 17 Jun 2023 21:47:19 GMT
- Title: Variational Sequential Optimal Experimental Design using Reinforcement
Learning
- Authors: Wanggang Shen, Jiayuan Dong, Xun Huan
- Abstract summary: We introduce variational sequential Optimal Experimental Design (vsOED), a new method for optimally designing a finite sequence of experiments under a Bayesian framework and with information-gain utilities.
Our vsOED results indicate substantially improved sample efficiency and reduced number of forward model simulations compared to previous sequential design algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce variational sequential Optimal Experimental Design (vsOED), a
new method for optimally designing a finite sequence of experiments under a
Bayesian framework and with information-gain utilities. Specifically, we adopt
a lower bound estimator for the expected utility through variational
approximation to the Bayesian posteriors. The optimal design policy is solved
numerically by simultaneously maximizing the variational lower bound and
performing policy gradient updates. We demonstrate this general methodology for
a range of OED problems targeting parameter inference, model discrimination,
and goal-oriented prediction. These cases encompass explicit and implicit
likelihoods, nuisance parameters, and physics-based partial differential
equation models. Our vsOED results indicate substantially improved sample
efficiency and reduced number of forward model simulations compared to previous
sequential design algorithms.
Related papers
- Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
Recent diffusion models provide a promising zero-shot solution to noisy linear inverse problems without retraining for specific inverse problems.
Inspired by this finding, we propose to improve recent methods by using more principled covariance determined by maximum likelihood estimation.
arXiv Detail & Related papers (2024-02-03T13:35:39Z) - Scalable method for Bayesian experimental design without integrating
over posterior distribution [0.0]
We address the computational efficiency in solving the A-optimal Bayesian design of experiments problems.
A-optimality is a widely used and easy-to-interpret criterion for Bayesian experimental design.
This study presents a novel likelihood-free approach to the A-optimal experimental design.
arXiv Detail & Related papers (2023-06-30T12:40:43Z) - Design Amortization for Bayesian Optimal Experimental Design [70.13948372218849]
We build off of successful variational approaches, which optimize a parameterized variational model with respect to bounds on the expected information gain (EIG)
We present a novel neural architecture that allows experimenters to optimize a single variational model that can estimate the EIG for potentially infinitely many designs.
arXiv Detail & Related papers (2022-10-07T02:12:34Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Bayesian Sequential Optimal Experimental Design for Nonlinear Models
Using Policy Gradient Reinforcement Learning [0.0]
We formulate this sequential optimal experimental design (sOED) problem as a finite-horizon partially observable Markov decision process (POMDP)
It is built to accommodate continuous random variables, general non-Gaussian posteriors, and expensive nonlinear forward models.
We solve for the sOED policy numerically via policy gradient (PG) methods from reinforcement learning, and derive and prove the PG expression for sOED.
The overall PG-sOED method is validated on a linear-Gaussian benchmark, and its advantages over batch and greedy designs are demonstrated through a contaminant source inversion problem in a
arXiv Detail & Related papers (2021-10-28T17:47:31Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
An AI-assisted design method based on topology optimization is presented, which is able to obtain optimized designs in a direct way.
Designs are provided by an artificial neural network, the predictor, on the basis of boundary conditions and degree of filling as input data.
arXiv Detail & Related papers (2020-12-11T14:33:27Z) - Quantized Variational Inference [6.09170287691728]
We show how Quantized Variational Inference produces variance free gradients for ELBO optimization.
We show that using Quantized Variational Inference framework leads to fast convergence for both score function and reparametrized gradient.
arXiv Detail & Related papers (2020-11-04T13:22:50Z) - Optimal Bayesian experimental design for subsurface flow problems [77.34726150561087]
We propose a novel approach for development of chaos expansion (PCE) surrogate model for the design utility function.
This novel technique enables the derivation of a reasonable quality response surface for the targeted objective function with a computational budget comparable to several single-point evaluations.
arXiv Detail & Related papers (2020-08-10T09:42:59Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.