論文の概要: ANPL: Compiling Natural Programs with Interactive Decomposition
- arxiv url: http://arxiv.org/abs/2305.18498v1
- Date: Mon, 29 May 2023 14:19:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 20:05:06.154938
- Title: ANPL: Compiling Natural Programs with Interactive Decomposition
- Title(参考訳): ANPL: インタラクティブな分解による自然プログラムのコンパイル
- Authors: Di Huang, Ziyuan Nan, Xing Hu, Pengwei Jin, Shaohui Peng, Yuanbo Wen,
Rui Zhang, Zidong Du, Qi Guo, Yewen Pu, Yunji Chen
- Abstract要約: 本稿では,ユーザ固有のタスクを分解可能なプログラミングシステムANPLを紹介する。
ANPLプログラムでは、ユーザは、生成されたプログラムのデータフローを指定するスケッチを直接操作することができる。
私たちは、最先端のAIシステムでは困難な、ユニークなタスクのセットであるARC(Abstraction and Reasoning Corpus)にANPLをデプロイします。
- 参考スコア(独自算出の注目度): 25.860058127910737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advents of Large Language Models (LLMs) have shown promise in augmenting
programming using natural interactions. However, while LLMs are proficient in
compiling common usage patterns into a programming language, e.g., Python, it
remains a challenge how to edit and debug an LLM-generated program. We
introduce ANPL, a programming system that allows users to decompose
user-specific tasks. In an ANPL program, a user can directly manipulate sketch,
which specifies the data flow of the generated program. The user annotates the
modules, or hole with natural language descriptions offloading the expensive
task of generating functionalities to the LLM. Given an ANPL program, the ANPL
compiler generates a cohesive Python program that implements the
functionalities in hole, while respecting the dataflows specified in sketch. We
deploy ANPL on the Abstraction and Reasoning Corpus (ARC), a set of unique
tasks that are challenging for state-of-the-art AI systems, showing it
outperforms baseline programming systems that (a) without the ability to
decompose tasks interactively and (b) without the guarantee that the modules
can be correctly composed together. We obtain a dataset consisting of 300/400
ARC tasks that were successfully decomposed and grounded in Python, providing
valuable insights into how humans decompose programmatic tasks. See the dataset
at https://iprc-dip.github.io/DARC.
- Abstract(参考訳): 大規模言語モデル(llms)の出現により、自然相互作用を用いたプログラミングの強化が期待されている。
しかし、LLMはプログラミング言語、例えばPythonに共通使用パターンをコンパイルするのに熟練しているが、LLM生成プログラムの編集とデバッグは依然として難しい。
本稿では,ユーザ固有のタスクを分解可能なプログラミングシステムANPLを紹介する。
ANPLプログラムでは、ユーザは、生成されたプログラムのデータフローを指定するスケッチを直接操作することができる。
ユーザはモジュールに注釈を付け、LLMに機能を生成する高価なタスクをオフロードする自然言語記述に穴を開ける。
ANPLプログラムが与えられた後、ANPLコンパイラは、スケッチで指定されたデータフローを尊重しながら、ホール内で機能を実装する密集したPythonプログラムを生成する。
私たちは、最先端のAIシステムでは困難な、ユニークなタスクのセットであるAbstraction and Reasoning Corpus(ARC)にANPLをデプロイし、ベースラインプログラミングシステムよりも優れています。
(a)タスクを対話的に分解する機能を持たず
(b) モジュールが正しく構成できることを保証することなく。
我々は,Pythonで構築された300/400のARCタスクからなるデータセットを入手し,人間がプログラムタスクを分解する方法に関する貴重な洞察を提供する。
データセットはhttps://iprc-dip.github.io/darcを参照。
関連論文リスト
- Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
大きな言語モデル(LLM)は、常識的推論と対話的な意思決定において強力な能力を示す。
近年,制御フローなどのコード・アジャセント技術を用いてLCM出力を構造化し,計画性能を向上させる技術が提案されている。
完全コード表現で動的なLEM計画手法であるREPL-Planを提案する。
論文 参考訳(メタデータ) (2024-11-21T04:23:17Z) - Exploring RL-based LLM Training for Formal Language Tasks with Programmed Rewards [49.7719149179179]
本稿では,PPOを用いた強化学習(RL)の実現可能性について検討する。
我々は,生成した出力の質を自動的に評価するために,明示的な報酬関数をプログラムできるプログラミングなどの形式言語で表されるタスクに焦点をあてる。
以上の結果から,2つの形式言語タスクに対する純粋なRLベースのトレーニングは困難であり,単純な算術タスクにおいても成功は限られていることがわかった。
論文 参考訳(メタデータ) (2024-10-22T15:59:58Z) - Large Language Models are Interpretable Learners [53.56735770834617]
本稿では,Large Language Models(LLM)とシンボルプログラムの組み合わせによって,表現性と解釈可能性のギャップを埋めることができることを示す。
自然言語プロンプトを持つ事前訓練されたLLMは、生の入力を自然言語の概念に変換することができる解釈可能な膨大なモジュールセットを提供する。
LSPが学んだ知識は自然言語の記述と記号規則の組み合わせであり、人間(解釈可能)や他のLLMに容易に転送できる。
論文 参考訳(メタデータ) (2024-06-25T02:18:15Z) - APPL: A Prompt Programming Language for Harmonious Integration of Programs and Large Language Model Prompts [21.819126948549766]
大規模言語モデル(LLM)は、巧妙なプロンプトの助けを借りて、多様なタスクを扱う能力が高まっている。
APPLはコンピュータプログラムとLLMの間のブリッジとして機能し、Python関数へのプロンプトのシームレスな埋め込みを可能にする。
論文 参考訳(メタデータ) (2024-06-19T02:29:59Z) - Synthetic Programming Elicitation for Text-to-Code in Very Low-Resource Programming and Formal Languages [21.18996339478024]
SPEAC(emphsynthetic programming elicitation and compilation)を紹介する。
SPEACは、より頻繁に、意味的正しさを犠牲にすることなく、構文的に正しいプログラムを生成する。
UCLID5形式検証言語のケーススタディにおいて,SPEACの性能を実証的に評価した。
論文 参考訳(メタデータ) (2024-06-05T22:16:19Z) - Synthesizing Programmatic Reinforcement Learning Policies with Large Language Model Guided Search [7.769411917500852]
LLM誘導検索フレームワーク(LLM-GS)について紹介する。
我々の重要な洞察は、LLMのプログラミングの専門知識と常識推論を活用して、仮定不要でランダムな探索手法の効率を高めることである。
本研究では,プログラム探索空間を効率的に探索し,一貫したプログラムを改善するための探索アルゴリズムであるSchduled Hill Climbingを開発した。
論文 参考訳(メタデータ) (2024-05-26T06:33:48Z) - HYSYNTH: Context-Free LLM Approximation for Guiding Program Synthesis [25.260063704712458]
大規模言語モデル(LLM)は、よく知らないDSLで完全に正しいプログラムを生成するのに失敗する。
これらの制約により、与えられたタスクに対する LLM 補完をタスク固有の文脈自由代用モデル学習に使用するハイブリッドアプローチを導入する。
このハイブリッドなアプローチを3つの領域で評価し、既存のプログラムシンセサイザーと同様に、無誘導探索とLCMからの直接サンプリングの両方より優れていることを示す。
論文 参考訳(メタデータ) (2024-05-24T18:45:51Z) - Self-Training Large Language Models for Improved Visual Program Synthesis With Visual Reinforcement [93.73648674743097]
ビジュアルプログラム合成は、構成型コンピュータビジョンタスクのための大規模言語モデルの推論能力を利用するための有望なアプローチである。
それまでの作業では、視覚プログラムを合成するために、凍結LDMを使用した数発のプロンプトを使用していた。
トレーニング用ビジュアルプログラムのデータセットは存在せず、ビジュアルプログラムデータセットの取得は簡単にクラウドソーシングできない。
論文 参考訳(メタデータ) (2024-04-06T13:25:00Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
本稿では,人間-LLMインタラクションフレームワークであるLow-code LLMを紹介する。
より制御可能で安定した応答を実現するために、6種類のシンプルなローコードビジュアルプログラミングインタラクションを組み込んでいる。
ユーザフレンドリなインタラクション,制御可能な生成,広い適用性という,低コード LLM の3つの利点を強調した。
論文 参考訳(メタデータ) (2023-04-17T09:27:40Z) - Hierarchical Programmatic Reinforcement Learning via Learning to Compose
Programs [58.94569213396991]
プログラムポリシーを作成するための階層型プログラム強化学習フレームワークを提案する。
提案するフレームワークは,プログラム作成の学習を通じて,アウト・オブ・ディストリビュータの複雑な動作を記述するプログラムポリシーを作成することができる。
Karel ドメインの実験結果から,提案するフレームワークがベースラインより優れていることが示された。
論文 参考訳(メタデータ) (2023-01-30T14:50:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。