On Diffusion Modeling for Anomaly Detection
- URL: http://arxiv.org/abs/2305.18593v2
- Date: Mon, 2 Oct 2023 21:17:41 GMT
- Title: On Diffusion Modeling for Anomaly Detection
- Authors: Victor Livernoche, Vineet Jain, Yashar Hezaveh, Siamak Ravanbakhsh
- Abstract summary: Diffusion models are attractive candidates for density-based anomaly detection.
We show that diffusion-based anomaly detection methods perform competitively for both semi-supervised and unsupervised settings.
These results establish diffusion-based anomaly detection as a scalable alternative to traditional methods.
- Score: 14.542411354617983
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Known for their impressive performance in generative modeling, diffusion
models are attractive candidates for density-based anomaly detection. This
paper investigates different variations of diffusion modeling for unsupervised
and semi-supervised anomaly detection. In particular, we find that Denoising
Diffusion Probability Models (DDPM) are performant on anomaly detection
benchmarks yet computationally expensive. By simplifying DDPM in application to
anomaly detection, we are naturally led to an alternative approach called
Diffusion Time Estimation (DTE). DTE estimates the distribution over diffusion
time for a given input and uses the mode or mean of this distribution as the
anomaly score. We derive an analytical form for this density and leverage a
deep neural network to improve inference efficiency. Through empirical
evaluations on the ADBench benchmark, we demonstrate that all diffusion-based
anomaly detection methods perform competitively for both semi-supervised and
unsupervised settings. Notably, DTE achieves orders of magnitude faster
inference time than DDPM, while outperforming it on this benchmark. These
results establish diffusion-based anomaly detection as a scalable alternative
to traditional methods and recent deep-learning techniques for standard
unsupervised and semi-supervised anomaly detection settings.
Related papers
- Multivariate Time Series Anomaly Detection using DiffGAN Model [6.62154383680049]
We propose DiffGAN, which adds a generative adversarial network component to the denoiser of diffusion model.
Compared to multiple state-of-the-art reconstruction models, experimental results demonstrate that DiffGAN achieves superior performance in anomaly detection.
arXiv Detail & Related papers (2025-01-03T01:20:38Z) - Anomaly detection using Diffusion-based methods [15.049468347670421]
This paper explores the utility of diffusion-based models for anomaly detection.
It focuses on their efficacy in identifying deviations in both compact and high-resolution datasets.
arXiv Detail & Related papers (2024-12-10T14:17:23Z) - ASD-Diffusion: Anomalous Sound Detection with Diffusion Models [6.659078422704148]
Anomalous Sound Detection based on Diffusion Models (ASD-Diffusion) is proposed for ASD in real-world factories.
Post-processing anomalies filter algorithm is proposed to detect anomalies that exhibit significant deviation from the original input after reconstruction.
Denoising diffusion implicit model is introduced to accelerate the inference speed.
arXiv Detail & Related papers (2024-09-24T10:42:23Z) - GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
Diffusion models tend to reconstruct normal counterparts of test images with certain noises added.
From the global perspective, the difficulty of reconstructing images with different anomalies is uneven.
We propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection.
arXiv Detail & Related papers (2024-06-11T17:27:23Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
We propose emphProjection Regret (PR), an efficient novelty detection method that mitigates the bias of non-semantic information.
PR computes the perceptual distance between the test image and its diffusion-based projection to detect abnormality.
Extensive experiments demonstrate that PR outperforms the prior art of generative-model-based novelty detection methods by a significant margin.
arXiv Detail & Related papers (2023-12-05T09:44:47Z) - ImDiffusion: Imputed Diffusion Models for Multivariate Time Series
Anomaly Detection [44.21198064126152]
We propose a novel anomaly detection framework named ImDiffusion.
ImDiffusion combines time series imputation and diffusion models to achieve accurate and robust anomaly detection.
We evaluate the performance of ImDiffusion via extensive experiments on benchmark datasets.
arXiv Detail & Related papers (2023-07-03T04:57:40Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Existing models such as Denoising Diffusion Probabilistic Models (DDPM) deliver high-quality, diverse samples but are slowed by an inherently high number of iterative steps.
We introduce a novel approach that tackles the problem by matching implicit and explicit factors.
We demonstrate that our proposed method obtains comparable generative performance to diffusion-based models and vastly superior results to models with a small number of sampling steps.
arXiv Detail & Related papers (2023-06-21T18:49:22Z) - CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion
Models [72.93652777646233]
Camouflaged Object Detection (COD) is a challenging task in computer vision due to the high similarity between camouflaged objects and their surroundings.
We propose a new paradigm that treats COD as a conditional mask-generation task leveraging diffusion models.
Our method, dubbed CamoDiffusion, employs the denoising process of diffusion models to iteratively reduce the noise of the mask.
arXiv Detail & Related papers (2023-05-29T07:49:44Z) - One-Step Detection Paradigm for Hyperspectral Anomaly Detection via
Spectral Deviation Relationship Learning [17.590080772567678]
Hyperspectral anomaly detection involves identifying the targets that deviate spectrally from their surroundings.
The current deep detection models are optimized to complete a proxy task, such as background reconstruction or generation.
In this paper, an unsupervised transferred direct detection model is proposed, which is optimized directly for the anomaly detection task.
arXiv Detail & Related papers (2023-03-22T06:41:09Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.