論文の概要: Sit Back and Relax: Learning to Drive Incrementally in All Weather
Conditions
- arxiv url: http://arxiv.org/abs/2305.18953v1
- Date: Tue, 30 May 2023 11:37:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 16:40:47.678485
- Title: Sit Back and Relax: Learning to Drive Incrementally in All Weather
Conditions
- Title(参考訳): Sit Back and Relax: あらゆる気象条件下でインクリメンタルに運転を学ぶ
- Authors: Stefan Leitner, M. Jehanzeb Mirza, Wei Lin, Jakub Micorek, Marc
Masana, Mateusz Kozinski, Horst Possegger, Horst Bischof
- Abstract要約: 自律走行シナリオでは、現在の物体検出モデルは、晴れた天候でテストした場合に強い性能を示す。
天気予報ネットワークのアフィンパラメータのみを異なる気象条件に適応させるために, DILAM(Domain-Incremental Learning through Activation Matching)を提案する。
私たちのメモリバンクは非常に軽量で、アフィンパラメータは典型的な物体検出器の2%以下である。
- 参考スコア(独自算出の注目度): 16.014293219912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In autonomous driving scenarios, current object detection models show strong
performance when tested in clear weather. However, their performance
deteriorates significantly when tested in degrading weather conditions. In
addition, even when adapted to perform robustly in a sequence of different
weather conditions, they are often unable to perform well in all of them and
suffer from catastrophic forgetting. To efficiently mitigate forgetting, we
propose Domain-Incremental Learning through Activation Matching (DILAM), which
employs unsupervised feature alignment to adapt only the affine parameters of a
clear weather pre-trained network to different weather conditions. We propose
to store these affine parameters as a memory bank for each weather condition
and plug-in their weather-specific parameters during driving (i.e. test time)
when the respective weather conditions are encountered. Our memory bank is
extremely lightweight, since affine parameters account for less than 2% of a
typical object detector. Furthermore, contrary to previous domain-incremental
learning approaches, we do not require the weather label when testing and
propose to automatically infer the weather condition by a majority voting
linear classifier.
- Abstract(参考訳): 自律走行シナリオでは、現在の物体検出モデルは、晴れた天候でテストした場合に強い性能を示す。
しかし, 気象条件が悪化すると, その性能は著しく低下する。
また、異なる気象条件の連続でロバストに振る舞うように適応しても、これら全てではうまく機能せず、壊滅的な忘れに苦しむことが多い。
そこで本研究では,事前学習されたネットワークのアフィンパラメータのみを異なる気象条件に適応させるために,教師なし特徴アライメントを用いたアクティベーションマッチング(dilam)によるドメインインクリメンタル学習を提案する。
我々は,これらのアフィンパラメータを各気象条件のメモリバンクとして格納し,各気象条件に遭遇した運転中(すなわちテスト時間)にその気象パラメータをプラグインする。
私たちのメモリバンクは非常に軽量で、アフィンパラメータは典型的な物体検出器の2%以下である。
さらに、従来のドメイン増分学習手法とは対照的に、テスト時に天気ラベルを必要とせず、多数決線形分類器による気象条件の自動推測を提案する。
関連論文リスト
- Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
我々は、TBN Granger Causalityという概念的微粒因果モデルを設計する。
次に, TBN Granger Causality を生成的に発見する TacSas という, エンドツーエンドの深部生成モデルを提案する。
気候予報のための気候指標ERA5と、極度気象警報のためのNOAAの極端気象基準でTacSasを試験する。
論文 参考訳(メタデータ) (2024-08-08T06:47:21Z) - Genuine Knowledge from Practice: Diffusion Test-Time Adaptation for
Video Adverse Weather Removal [53.15046196592023]
ビデオの悪天候除去におけるテスト時間適応について紹介する。
本稿では,テスト時間適応を反復拡散逆プロセスに統合する最初のフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-12T14:21:30Z) - DA-RAW: Domain Adaptive Object Detection for Real-World Adverse Weather Conditions [2.048226951354646]
悪天候下での物体検出のための教師なし領域適応フレームワークを提案する。
提案手法は,高次特徴のスタイル関連情報に集中することで,スタイルギャップを解消する。
自己教師付きコントラスト学習を用いて、我々のフレームワークは、気象のギャップを減らし、気象汚染に対して堅牢な事例特徴を取得する。
論文 参考訳(メタデータ) (2023-09-15T04:37:28Z) - Robust Monocular Depth Estimation under Challenging Conditions [81.57697198031975]
最先端のモノクル深度推定手法は、難解な照明や気象条件下では信頼性が低い。
我々はmd4allでこれらの安全クリティカルな問題に取り組む: 単純で効果的なソリューションで、悪条件と理想条件の両方で確実に機能する。
論文 参考訳(メタデータ) (2023-08-18T17:59:01Z) - An Efficient Domain-Incremental Learning Approach to Drive in All
Weather Conditions [8.436505917796174]
ディープニューラルネットワークは、自律運転のための印象的な視覚知覚性能を実現する。
彼らは、異なる気象条件に適応する際に、以前に学んだ情報を忘れがちである。
DISC -- 統計的補正によるドメインインクリメンタル - 新しいタスクを漸進的に学習できるシンプルなゼロフォゲッティングアプローチを提案する。
論文 参考訳(メタデータ) (2022-04-19T11:39:20Z) - Vision in adverse weather: Augmentation using CycleGANs with various
object detectors for robust perception in autonomous racing [70.16043883381677]
自律レースでは、天気は突然変化し、認識が著しく低下し、非効率な操作が引き起こされる。
悪天候の検知を改善するために、ディープラーニングベースのモデルは通常、そのような状況下でキャプチャされた広範なデータセットを必要とする。
本稿では,5つの最先端検出器のうち4つの性能向上を図るために,自動レース(CycleGANを用いた)における合成悪条件データセットを用いた手法を提案する。
論文 参考訳(メタデータ) (2022-01-10T10:02:40Z) - TransWeather: Transformer-based Restoration of Images Degraded by
Adverse Weather Conditions [77.20136060506906]
トランスウェザー (TransWeather) は1つのエンコーダとデコーダしか持たない変圧器を用いたエンド・ツー・エンドモデルである。
TransWeatherは、All-in-Oneネットワーク上で、複数のテストデータセット間で大幅に改善されている。
実世界のテスト画像で検証され、従来の方法よりも効果的であることが判明した。
論文 参考訳(メタデータ) (2021-11-29T18:57:09Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Robustness of Object Detectors in Degrading Weather Conditions [7.91378990016322]
自律走行のための最先端の物体検出システムは、晴天条件下で有望な結果を達成する。
これらのシステムは、雨や霧、雪などの気象条件の悪化に対処する必要がある。
ほとんどのアプローチは、晴天のシーンのみからなるKITTIデータセットでのみ評価される。
論文 参考訳(メタデータ) (2021-06-16T13:56:07Z) - Smart Weather Forecasting Using Machine Learning:A Case Study in
Tennessee [2.9477900773805032]
本稿では,複数の気象観測所の過去のデータを利用して,シンプルな機械学習モデルを訓練する天気予報手法を提案する。
モデルの精度は、現在の最先端技術と併用するのに十分である。
論文 参考訳(メタデータ) (2020-08-25T02:41:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。