論文の概要: Adaptive False Discovery Rate Control with Privacy Guarantee
- arxiv url: http://arxiv.org/abs/2305.19482v1
- Date: Wed, 31 May 2023 01:22:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-01 19:08:33.180841
- Title: Adaptive False Discovery Rate Control with Privacy Guarantee
- Title(参考訳): プライバシ保証による適応的偽発見率制御
- Authors: Xintao Xia and Zhanrui Cai
- Abstract要約: 本稿では,プライバシ保証付きユーザ指定レベル$alpha$で,従来のFDRメトリックを正確に制御できる,差分プライベート適応型FDR制御法を提案する。
プライベートでないAdaPTと比較すると、精度の低下は少ないが、計算コストを大幅に削減する。
- 参考スコア(独自算出の注目度): 1.4213973379473654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differentially private multiple testing procedures can protect the
information of individuals used in hypothesis tests while guaranteeing a small
fraction of false discoveries. In this paper, we propose a differentially
private adaptive FDR control method that can control the classic FDR metric
exactly at a user-specified level $\alpha$ with privacy guarantee, which is a
non-trivial improvement compared to the differentially private
Benjamini-Hochberg method proposed in Dwork et al. (2021). Our analysis is
based on two key insights: 1) a novel p-value transformation that preserves
both privacy and the mirror conservative property, and 2) a mirror peeling
algorithm that allows the construction of the filtration and application of the
optimal stopping technique. Numerical studies demonstrate that the proposed
DP-AdaPT performs better compared to the existing differentially private FDR
control methods. Compared to the non-private AdaPT, it incurs a small accuracy
loss but significantly reduces the computation cost.
- Abstract(参考訳): 異なるプライベートな複数のテスト手順は、仮説テストで使用される個人の情報を保護すると同時に、わずかな偽の発見を保証する。
本稿では,dwork et al. (2021) で提案されている微分プライベートなbenjamini-hochberg法と比較して,プライバシ保証を伴うユーザ指定レベル$\alpha$で,従来のfdrメトリックを正確に制御できる微分プライベート適応fdr制御法を提案する。
私たちの分析は2つの重要な洞察に基づいている。
1)プライバシとミラー保守性の両方を保持する新規なp値変換と,
2) 最適停止法のフィルタ構築と適用が可能なミラー剥離アルゴリズムについて検討した。
数値実験により,DP-AdaPTは既存の差分プライベートFDR制御法よりも優れた性能を示した。
非プライベート適応と比較して、精度の低下は少ないが、計算コストは大幅に削減される。
関連論文リスト
- Minimax Optimal Two-Sample Testing under Local Differential Privacy [3.3317825075368908]
ローカルディファレンシャルプライバシ(LDP)の下でのプライベート2サンプルテストにおけるプライバシと統計ユーティリティのトレードオフについて検討する。
本稿では,Laplace,離散Laplace,GoogleのRAPPORなど,実用的なプライバシメカニズムを用いたプライベートな置換テストを紹介する。
我々は,ビンニングによる連続データの研究を行い,その一様分離率をH"olderとBesovの滑らか度クラスよりもLDPで検討した。
論文 参考訳(メタデータ) (2024-11-13T22:44:25Z) - Private Language Models via Truncated Laplacian Mechanism [18.77713904999236]
本稿では,高次元トラカート型ラプラシアン機構と呼ばれる新しいプライベート埋め込み手法を提案する。
提案手法は,従来のプライベート単語埋め込み法に比べて分散度が低いことを示す。
注目すべきは、高いプライバシー体制であっても、私たちのアプローチは、プライベートでないシナリオに比べて、実用性がわずかに低下することです。
論文 参考訳(メタデータ) (2024-10-10T15:25:02Z) - Practical Privacy-Preserving Gaussian Process Regression via Secret
Sharing [23.80837224347696]
本稿では秘密共有(SS)に基づくプライバシー保護型GPR手法を提案する。
コンフュージョン補正(confusion-correction)というアイデアを通じて,新たなSSベースの指数演算を導出し,Cholesky分解に基づくSSベースの行列逆変換アルゴリズムを構築する。
実験結果から,データプライバシ保護の前提として,提案手法が妥当な精度と効率を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-06-26T08:17:51Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
推定検証リリース(EVR)と呼ばれる新しい差分プライバシーパラダイムを提案する。
EVRパラダイムは、まずメカニズムのプライバシパラメータを推定し、その保証を満たすかどうかを確認し、最後にクエリ出力を解放する。
我々の実証的な評価は、新たに提案されたEVRパラダイムが、プライバシ保護機械学習のユーティリティプライバシトレードオフを改善することを示している。
論文 参考訳(メタデータ) (2023-04-17T00:38:01Z) - Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis
Testing: A Lesson From Fano [83.5933307263932]
本研究では,離散データに対するデータ再構成攻撃について検討し,仮説テストの枠組みの下で解析する。
基礎となるプライベートデータが$M$のセットから値を取ると、ターゲットのプライバシパラメータ$epsilon$が$O(log M)$になる。
論文 参考訳(メタデータ) (2022-10-24T23:50:12Z) - No Free Lunch in "Privacy for Free: How does Dataset Condensation Help
Privacy" [75.98836424725437]
データプライバシを保護するために設計された新しい手法は、慎重に精査する必要がある。
プライバシ保護の失敗は検出し難いが,プライバシ保護法を実装したシステムが攻撃された場合,破滅的な結果につながる可能性がある。
論文 参考訳(メタデータ) (2022-09-29T17:50:23Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
DP-SGDで訓練されたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付ける。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
論文 参考訳(メタデータ) (2022-06-06T13:49:37Z) - Debugging Differential Privacy: A Case Study for Privacy Auditing [60.87570714269048]
監査は、微分プライベートなスキームの欠陥を見つけるためにも利用できることを示す。
このケーススタディでは、微分プライベートなディープラーニングアルゴリズムの最近のオープンソース実装を監査し、99.9999999999%の信頼を得て、この実装が要求される差分プライバシー保証を満たさないことを発見した。
論文 参考訳(メタデータ) (2022-02-24T17:31:08Z) - Gaussian Processes with Differential Privacy [3.934224774675743]
我々は、差分プライバシー(DP)を介して、ガウス過程(GP)に強力なプライバシー保護を加える。
我々は、スパースGP手法を用いて、既知の誘導点に関するプライベートな変分近似を公開することによってこれを達成した。
我々の実験は、十分な量のデータがあれば、強力なプライバシー保護下で正確なモデルを生成することができることを示した。
論文 参考訳(メタデータ) (2021-06-01T13:23:16Z) - Learning with User-Level Privacy [61.62978104304273]
ユーザレベルの差分プライバシー制約下での学習課題を,アルゴリズムを用いて解析する。
個々のサンプルのプライバシーのみを保証するのではなく、ユーザレベルのdpはユーザの貢献全体を保護します。
プライバシコストが$tau$に比例した$K$適応的に選択されたクエリのシーケンスにプライベートに答えるアルゴリズムを導き出し、私たちが検討する学習タスクを解決するためにそれを適用します。
論文 参考訳(メタデータ) (2021-02-23T18:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。