Manifold Constraint Regularization for Remote Sensing Image Generation
- URL: http://arxiv.org/abs/2305.19507v3
- Date: Thu, 28 Mar 2024 13:51:37 GMT
- Title: Manifold Constraint Regularization for Remote Sensing Image Generation
- Authors: Xingzhe Su, Changwen Zheng, Wenwen Qiang, Fengge Wu, Junsuo Zhao, Fuchun Sun, Hui Xiong,
- Abstract summary: Generative Adversarial Networks (GANs) have shown notable accomplishments in remote sensing domain.
This paper analyzes the characteristics of remote sensing images and proposes manifold constraint regularization.
- Score: 34.68714863219855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Adversarial Networks (GANs) have shown notable accomplishments in remote sensing domain. However, this paper reveals that their performance on remote sensing images falls short when compared to their impressive results with natural images. This study identifies a previously overlooked issue: GANs exhibit a heightened susceptibility to overfitting on remote sensing images.To address this challenge, this paper analyzes the characteristics of remote sensing images and proposes manifold constraint regularization, a novel approach that tackles overfitting of GANs on remote sensing images for the first time. Our method includes a new measure for evaluating the structure of the data manifold. Leveraging this measure, we propose the manifold constraint regularization term, which not only alleviates the overfitting problem, but also promotes alignment between the generated and real data manifolds, leading to enhanced quality in the generated images. The effectiveness and versatility of this method have been corroborated through extensive validation on various remote sensing datasets and GAN models. The proposed method not only enhances the quality of the generated images, reflected in a 3.13\% improvement in Frechet Inception Distance (FID) score, but also boosts the performance of the GANs on downstream tasks, evidenced by a 3.76\% increase in classification accuracy.
Related papers
- Semantic Guided Large Scale Factor Remote Sensing Image Super-resolution with Generative Diffusion Prior [13.148815217684277]
Large scale factor super-resolution (SR) algorithms are vital for maximizing the utilization of low-resolution (LR) satellite data captured from orbit.
Existing methods confront challenges in recovering SR images with clear textures and correct ground objects.
We introduce a novel framework, the Semantic Guided Diffusion Model (SGDM), designed for large scale factor remote sensing image super-resolution.
arXiv Detail & Related papers (2024-05-11T16:06:16Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - On quantifying and improving realism of images generated with diffusion [50.37578424163951]
We propose a metric, called Image Realism Score (IRS), computed from five statistical measures of a given image.
IRS is easily usable as a measure to classify a given image as real or fake.
We experimentally establish the model- and data-agnostic nature of the proposed IRS by successfully detecting fake images generated by Stable Diffusion Model (SDM), Dalle2, Midjourney and BigGAN.
Our efforts have also led to Gen-100 dataset, which provides 1,000 samples for 100 classes generated by four high-quality models.
arXiv Detail & Related papers (2023-09-26T08:32:55Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
We propose a novel SR method called MPF-Net that leverages multiple perceptual features of input images.
Our method incorporates a Multi-Perception Feature Extraction (MPFE) module to extract diverse perceptual information.
We also introduce a contrastive regularization term (CR) that improves the model's learning capability.
arXiv Detail & Related papers (2023-05-26T07:35:49Z) - Transformation-Invariant Network for Few-Shot Object Detection in Remote
Sensing Images [15.251042369061024]
Few-shot object detection (FSOD) relies on a large amount of labeled data for training.
Scale and orientation variations of objects in remote sensing images pose significant challenges to existing FSOD methods.
We propose integrating a feature pyramid network and utilizing prototype features to enhance query features.
arXiv Detail & Related papers (2023-03-13T02:21:38Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Adversarial Domain Feature Adaptation for Bronchoscopic Depth Estimation [111.89519571205778]
In this work, we propose an alternative domain-adaptive approach to depth estimation.
Our novel two-step structure first trains a depth estimation network with labeled synthetic images in a supervised manner.
The results of our experiments show that the proposed method improves the network's performance on real images by a considerable margin.
arXiv Detail & Related papers (2021-09-24T08:11:34Z) - Compound Frechet Inception Distance for Quality Assessment of GAN
Created Images [7.628527132779575]
One notable application of GANs is developing fake human faces, also known as "deep fakes"
Measuring the quality of the generated images is inherently subjective but attempts to objectify quality using standardized metrics have been made.
We propose to improve the robustness of the evaluation process by integrating lower-level features to cover a wider array of visual defects.
arXiv Detail & Related papers (2021-06-16T06:53:27Z) - Label Geometry Aware Discriminator for Conditional Generative Networks [40.89719383597279]
Conditional Generative Adversarial Networks (GANs) can generate highly photo realistic images with desired target classes.
These synthetic images have not always been helpful to improve downstream supervised tasks such as image classification.
arXiv Detail & Related papers (2021-05-12T08:17:25Z) - T-GD: Transferable GAN-generated Images Detection Framework [16.725880610265378]
We present the Transferable GAN-images Detection framework T-GD.
T-GD is composed of a teacher and a student model that can iteratively teach and evaluate each other to improve the detection performance.
To train the student model, we inject noise by mixing up the source and target datasets, while constraining the weight variation to preserve the starting point.
arXiv Detail & Related papers (2020-08-10T13:20:19Z) - Adversarial Semantic Data Augmentation for Human Pose Estimation [96.75411357541438]
We propose Semantic Data Augmentation (SDA), a method that augments images by pasting segmented body parts with various semantic granularity.
We also propose Adversarial Semantic Data Augmentation (ASDA), which exploits a generative network to dynamiclly predict tailored pasting configuration.
State-of-the-art results are achieved on challenging benchmarks.
arXiv Detail & Related papers (2020-08-03T07:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.