DKINet: Medication Recommendation via Domain Knowledge Informed Deep Learning
- URL: http://arxiv.org/abs/2305.19604v4
- Date: Wed, 8 May 2024 12:49:20 GMT
- Title: DKINet: Medication Recommendation via Domain Knowledge Informed Deep Learning
- Authors: Sicen Liu, Xiaolong Wang, Xianbing Zhao, Hao Chen,
- Abstract summary: Medication recommendation is a fundamental yet crucial branch of healthcare.
Previous studies have primarily focused on learning patient representation from electronic health records.
We propose a knowledge injection module that addresses the effective integration of domain knowledge with complex clinical manifestations.
- Score: 12.609882335746859
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medication recommendation is a fundamental yet crucial branch of healthcare that presents opportunities to assist physicians in making more accurate medication prescriptions for patients with complex health conditions. Previous studies have primarily focused on learning patient representation from electronic health records (EHR). While considering the clinical manifestations of the patient is important, incorporating domain-specific prior knowledge is equally significant in diagnosing the patient's health conditions. However, effectively integrating domain knowledge with the patient's clinical manifestations can be challenging, particularly when dealing with complex clinical manifestations. Therefore, in this paper, we first identify comprehensive domain-specific prior knowledge, namely the Unified Medical Language System (UMLS), which is a comprehensive repository of biomedical vocabularies and standards, for knowledge extraction. Subsequently, we propose a knowledge injection module that addresses the effective integration of domain knowledge with complex clinical manifestations, enabling an effective characterization of the health conditions of the patient. Furthermore, considering the significant impact of a patient's medication history on their current medication, we introduce a historical medication-aware patient representation module to capture the longitudinal influence of historical medication information on the representation of current patients. Extensive experiments on three publicly benchmark datasets verify the superiority of our proposed method, which outperformed other methods by a significant margin. The code is available at: https://github.com/sherry6247/DKINet.
Related papers
- DIRI: Adversarial Patient Reidentification with Large Language Models for Evaluating Clinical Text Anonymization [13.038800602897354]
We develop an adversarial approach using a large language model to re-identify the patient corresponding to a redacted clinical note.
Our method uses a large language model to reidentify the patient corresponding to a redacted clinical note.
Although ClinicalBERT was the most effective, masking all identified PII, our tool still reidentified 9% of clinical notes.
arXiv Detail & Related papers (2024-10-22T14:06:31Z) - Understanding Clinical Decision-Making in Traditional East Asian Medicine through Dimensionality Reduction: An Empirical Investigation [5.120567378386615]
This study examines the clinical decision-making processes in Traditional East Asian Medicine (TEAM)
We focus on the Eight Principle Pattern Identification (EPPI) system and utilize empirical data from the Shang-Han-Lun.
We test three hypotheses: whether the Ext-Int pattern contains the most information about patient symptoms, represents the most abstract and generalizable symptom information, and facilitates the selection of appropriate herbal prescriptions.
arXiv Detail & Related papers (2024-09-29T03:28:19Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - CausalMed: Causality-Based Personalized Medication Recommendation Centered on Patient health state [11.137353555292277]
CausalMed is a patient health state-centric model capable of enhancing the personalization of patient representations.
Our method learns more personalized patient representation and outperforms state-of-the-art models in accuracy and safety.
arXiv Detail & Related papers (2024-04-18T14:44:08Z) - RECAP-KG: Mining Knowledge Graphs from Raw GP Notes for Remote COVID-19
Assessment in Primary Care [45.43645878061283]
We present a framework that performs knowledge graph construction from raw GP medical notes written during or after patient consultations.
Our knowledge graphs include information about existing patient symptoms, their duration, and their severity.
We apply our framework to consultation notes of COVID-19 patients in the UK.
arXiv Detail & Related papers (2023-06-17T23:35:51Z) - MD-Manifold: A Medical-Distance-Based Representation Learning Approach
for Medical Concept and Patient Representation [6.795388490479779]
Representing medical concepts for healthcare analytical tasks requires incorporating medical domain knowledge and prior data information.
Our proposed framework, MD-Manifold, introduces a novel approach to medical concept and patient representation.
It includes a new data augmentation approach, concept distance metric, and patient-patient network to incorporate crucial medical domain knowledge and prior data information.
arXiv Detail & Related papers (2023-04-30T18:58:32Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
We introduce a model-agnostic pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization.
Experimental findings indicate that our method not only bolsters performance but also effectively curbs variance for various language models.
arXiv Detail & Related papers (2023-03-23T04:47:46Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine [68.7814360102644]
We propose the Re$3$Writer method with retrieval-augmented generation and knowledge-grounded reasoning.
We demonstrate the effectiveness of our method in generating patient discharge instructions.
arXiv Detail & Related papers (2022-10-23T16:34:39Z) - Enriching Unsupervised User Embedding via Medical Concepts [51.17532619610099]
Unsupervised user embedding aims to encode patients into fixed-length vectors without human supervisions.
Medical concepts extracted from the clinical notes contain rich connections between patients and their clinical categories.
We propose a concept-aware unsupervised user embedding that jointly leverages text documents and medical concepts from two clinical corpora.
arXiv Detail & Related papers (2022-03-20T18:54:05Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.