論文の概要: Data Representations' Study of Latent Image Manifolds
- arxiv url: http://arxiv.org/abs/2305.19730v1
- Date: Wed, 31 May 2023 10:49:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-01 17:09:13.738227
- Title: Data Representations' Study of Latent Image Manifolds
- Title(参考訳): データ表現の潜在画像マニフォールドに関する研究
- Authors: Ilya Kafuman and Omri Aznecot
- Abstract要約: 画像分類のための最先端の訓練された畳み込みニューラルネットワークは、層に沿って特徴的な曲率プロファイルを持つことがわかった。
また,最後の2層間の曲率ギャップは,ネットワークの一般化能力と強く相関していることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have been demonstrated to achieve phenomenal success in
many domains, and yet their inner mechanisms are not well understood. In this
paper, we investigate the curvature of image manifolds, i.e., the manifold
deviation from being flat in its principal directions. We find that
state-of-the-art trained convolutional neural networks for image classification
have a characteristic curvature profile along layers: an initial steep
increase, followed by a long phase of a plateau, and followed by another
increase. In contrast, this behavior does not appear in untrained networks in
which the curvature flattens. We also show that the curvature gap between the
last two layers has a strong correlation with the generalization capability of
the network. Moreover, we find that the intrinsic dimension of latent codes is
not necessarily indicative of curvature. Finally, we observe that common
regularization methods such as mixup yield flatter representations when
compared to other methods. Our experiments show consistent results over a
variety of deep learning architectures and multiple data sets. Our code is
publicly available at https://github.com/azencot-group/CRLM
- Abstract(参考訳): ディープニューラルネットワークは多くの領域で驚くべき成功を収めることが示されているが、その内部メカニズムはよく分かっていない。
本稿では,画像多様体の曲率,すなわち,多様体の偏差が主方向において平坦であることについて検討する。
画像分類のための最先端の訓練された畳み込みニューラルネットワークは、層に沿って特徴的な曲率プロファイルを持つことがわかりました。
対照的に、この挙動は曲率が平坦な未訓練のネットワークには現れない。
また,最後の2層間の曲率ギャップは,ネットワークの一般化能力と強く相関していることを示す。
さらに,潜伏符号の内在次元は必ずしも曲率を表すものではないことが判明した。
最後に,ミックスアップなどの共通正規化手法が,他の手法と比較してフラットな表現を生じさせることを示す。
実験では、さまざまなディープラーニングアーキテクチャと複数のデータセットに対して一貫した結果を示す。
私たちのコードはhttps://github.com/azencot-group/CRLMで公開されています。
関連論文リスト
- Asymptotics of Learning with Deep Structured (Random) Features [9.366617422860543]
機能マップの大規模なクラスでは、読み出しレイヤの学習に伴うテストエラーの厳密な特徴付けを提供しています。
いくつかのケースでは、勾配降下下で訓練された深部有限幅ニューラルネットワークによって学習された特徴写像をキャプチャできる。
論文 参考訳(メタデータ) (2024-02-21T18:35:27Z) - Understanding Deep Representation Learning via Layerwise Feature
Compression and Discrimination [33.273226655730326]
深層線形ネットワークの各層は、幾何速度でクラス内特徴を徐々に圧縮し、線形速度でクラス間特徴を識別することを示す。
これは、ディープ線形ネットワークの階層的表現における特徴進化の最初の定量的評価である。
論文 参考訳(メタデータ) (2023-11-06T09:00:38Z) - Effects of Data Geometry in Early Deep Learning [16.967930721746672]
ディープニューラルネットワークは、画像からグラフまで、さまざまなタイプのデータ上の関数を、基礎構造によって近似することができる。
ニューラルネットワークが線形関数として振る舞う領域にデータ多様体を分割する。
論文 参考訳(メタデータ) (2022-12-29T17:32:05Z) - Convolutional Neural Networks on Manifolds: From Graphs and Back [122.06927400759021]
本稿では,多様体畳み込みフィルタと点次非線形性からなる多様体ニューラルネットワーク(MNN)を提案する。
要約すると、我々は大きなグラフの極限として多様体モデルに焦点を合わせ、MNNを構築するが、それでもMNNの離散化によってグラフニューラルネットワークを復活させることができる。
論文 参考訳(メタデータ) (2022-10-01T21:17:39Z) - Training invariances and the low-rank phenomenon: beyond linear networks [44.02161831977037]
線形分離可能なデータに対して、ロジスティックあるいは指数損失の深い線形ネットワークを訓練すると、重みは1$の行列に収束する。
非線形ReLU活性化フィードフォワードネットワークに対して、低ランク現象が厳格に証明されたのはこれが初めてである。
我々の証明は、あるパラメータの方向収束の下で重みが一定である多重線型関数と別のReLUネットワークへのネットワークの特定の分解に依存している。
論文 参考訳(メタデータ) (2022-01-28T07:31:19Z) - Optimization-Based Separations for Neural Networks [57.875347246373956]
本研究では,2層のシグモダルアクティベーションを持つディープ2ニューラルネットワークを用いて,ボールインジケータ関数を効率よく学習できることを示す。
これは最適化に基づく最初の分離結果であり、より強力なアーキテクチャの近似の利点は、実際に確実に現れる。
論文 参考訳(メタデータ) (2021-12-04T18:07:47Z) - Redundant representations help generalization in wide neural networks [71.38860635025907]
様々な最先端の畳み込みニューラルネットワークの最後に隠された層表現について検討する。
最後に隠された表現が十分に広ければ、そのニューロンは同一の情報を持つグループに分裂し、統計的に独立したノイズによってのみ異なる傾向にある。
論文 参考訳(メタデータ) (2021-06-07T10:18:54Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
我々はスケルトンに基づく行動認識のためのシンプルで高度にモジュール化されたグラフ畳み込みネットワークアーキテクチャを設計する。
ネットワークは,空間的および時間的経路から多粒度情報を集約するビルディングブロックを繰り返すことで構築される。
論文 参考訳(メタデータ) (2020-11-26T14:43:04Z) - Hierarchical nucleation in deep neural networks [67.85373725288136]
我々は,いくつかの最先端DCNにおいて,隠れた層にまたがるImageNetデータセットの確率密度の進化について検討した。
初期層は, 分類に無関係な構造を排除し, 一様確率密度を生成する。
その後の層では、密度ピークは階層的な方法で発生し、概念のセマンティック階層を反映する。
論文 参考訳(メタデータ) (2020-07-07T14:42:18Z) - Embedding Propagation: Smoother Manifold for Few-Shot Classification [131.81692677836202]
本稿では, 組込み伝搬を非教師なし非パラメトリック正規化器として, 数ショット分類における多様体平滑化に用いることを提案する。
埋め込み伝播がより滑らかな埋め込み多様体を生み出すことを実証的に示す。
複数の半教師付き学習シナリオにおいて,埋め込み伝搬によりモデルの精度が最大16%向上することを示す。
論文 参考訳(メタデータ) (2020-03-09T13:51:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。